Skip to main content

Analysis of Calcium Transients in Cardiac Myocytes and Assessment of the Sarcoplasmic Reticulum Ca2+-ATPase Contribution

  • Protocol
  • First Online:
Myogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 798))

Abstract

Ca2+ signaling plays an essential role in several functions of cardiac myocytes. Transient rises and reductions of cytosolic Ca2+, permitted by the sarcoplasmic reticulum Ca2+ ATPase (SERCA2) and other proteins, control each cycle of contraction and relaxation. Here we provide a practical method for isolation of neonatal rat cardiac myocytes and measurement of Ca2+ transients in cultured cardiac myocytes, yielding information on kinetic resolution of the transients, variations of cytosolic Ca2+ concentrations, and adequacy of intracellular Ca2+ stores. We also provide examples of experimental perturbations that can be used to assess the contribution of SERCA2 to Ca2+ signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carafoli E (2002) Calcium signaling: a tale for all seasons. Proc Natl Acad Sci 99:1115–1122

    Article  PubMed  CAS  Google Scholar 

  2. Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  PubMed  CAS  Google Scholar 

  3. Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Ann Rev Physiol 70:23-49

    Article  CAS  Google Scholar 

  4. Inesi G, Ebashi S, Watanabe S (1964) Preparation of vesicular relaxing factor from bovine heart tissue. Am J Physiol 207:1339–1344

    PubMed  CAS  Google Scholar 

  5. Zarain-Herzberg A, MacLennan DH, Periasamy M (1990) Characterization of rabbit cardiac sarco(endo)plasmic reticulum Ca2+-ATPase gene. J Biol Chem 265:4670–4677

    PubMed  CAS  Google Scholar 

  6. Lytton J, Westlin M, Burk SE, Shull GE, MacLennan DH (1992) Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem 267:14483–14489

    PubMed  CAS  Google Scholar 

  7. Dally S, Bredoux R, Corvazier E, Anderson JP, Clausen JD,Dode L, Fanchaouy M, Gelebart P, Monceau V, Del Monte F, Gwathmey JK, Hajjar R, Chaabane C, Bobe R, Raies A, Enouf J (2006) Ca2+-ATPases in non-failing and failing heart: evidence for a novel cardiac sarco/endoplasmic reticulum Ca2+-ATPase 2 isoform (SERCA2). Biochem J 395:249–258

    Article  PubMed  CAS  Google Scholar 

  8. Prasad AM, Inesi G (2009) Effects of thapsigargin and phenylephrine on calcineurin and protein kinase C signaling functions in cardiac myocytes. Am J Physiol Cell Physiol 296:C992–C1002

    Article  PubMed  CAS  Google Scholar 

  9. Dani AM, Cittadini A, Inesi G (1979) Calcium transport and contractile activity in dissociated mammalian heart cells. Am J Physiol 237:C147–C155

    PubMed  CAS  Google Scholar 

  10. Cavagna M, O’Donnell JM, Sumbilla C, Inesi G, Klein MG (2000) Exogenous Ca2+-ATPase isoform effects on Ca2+ transients of embryonic chicken and neonatal rat cardiac myocytes. J Physiol 528:53–63

    Article  PubMed  CAS  Google Scholar 

  11. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  12. Flesch M, Schwinger RH, Schnabel P, Schiffer F, van Gelder I, Bavendiek U, Südkamp M, Kuhn-Regnier F, Böhm M (1996) Sarcoplasmic reticulum Ca2+ATPase and phospholamban mRNA and protein levels in end-stage heart failure due to ischemic or dilated cardiomyopathy. J Mol Med 74:321–332

    Article  PubMed  CAS  Google Scholar 

  13. Kirby MS, Sagara Y, Gaa S, Inesi G, Lederer WJ, Rogers TB (1992) Thapsigargin inhibits contraction and Ca2+ transient in cardiac cells by specific inhibition of the sarcoplasmic reticulum Ca2+ pump. J Biol Chem 267:12545–12551

    PubMed  CAS  Google Scholar 

  14. Prasad AM, Ma H, Sumbilla C, Lee DI, Klein MG, Inesi G (2007) Phenylephrine hypertrophy, Ca2+-ATPase (SERCA2), and Ca2+ – signaling in neonatal rat cardiac myocytes. Am J Physiol Cell Physiol 292:C2269–C2275

    Article  PubMed  CAS  Google Scholar 

  15. Periasamy M, Reed TD, Liu LH, Ji Y, Loukianov E, Paul RJ, Nieman ML, Riddle T, Duffy JJ, Doetschman T, Lorenz JN, Shull GE (1999) Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) gene. J Biol Chem 274:2556–2562

    Article  PubMed  CAS  Google Scholar 

  16. Seth M, Sumbilla C, Mullen SP, Lewis D, Klein MG, Hussain A, Soboloff J, Gill DL, Inesi G (2004) Sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes. Proc Natl Acad Sci USA 101:16683–16688

    Article  PubMed  CAS  Google Scholar 

  17. He H, Giordano FJ, Hilal-Dandan R, Choi DJ, Rockman HA, McDonough PM, Bluhm WF, Meyer M, Sayen MR, Swanson E, Dillman WH (1997) Overexpression of the rat sarcoplasmic reticulum Ca2+ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation. J Clin Invest 100:380–389

    Article  PubMed  CAS  Google Scholar 

  18. Baker DL, Hashimoto K, Grupp IL, Ji Y, Reed T, Loukianov E, Grupp G, Bhagwhat A, Hoit B, Walsh R, Marban E, Periasamy M (1998) Targetedoverexpression of the sarcoplasmic reticulum Ca2+ATPase increases cardiac contractility in transgenic mouse hearts. Circ Res 83:1205–1214

    Article  PubMed  CAS  Google Scholar 

  19. Loukianov E, Ji Y, Grupp IL, Kirkpatrick DL, Baker DL, Loukianova T, Grupp G, Lytton J, Walsh RA, Periasamy M (1998) Enhanced myocardial contractility and increased Ca2+ transport function in transgenic hearts expressing the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase Circ Res 83:889–897

    Article  PubMed  CAS  Google Scholar 

  20. Hajjar RJ, Kang JX, Gwathmey JK, Rosenzweig A (1997) Physiological effects of adenoviral gene transfer of sarcoplasmic reticulum calcium ATPase in isolated rat myocytes. Circulation 95:423–429

    Article  PubMed  CAS  Google Scholar 

  21. Lundblad A, Gonzalez-Serratos H, Inesi G, Swanson J, Paolini P (1986) Patterns of sarcomere activation, temperature dependence, and effect of ryanodine in chemically skinned cardiac fibers. J Gen Physiol 87:885–905

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This and related work were supported by National Institutes of Health Grant NHBLI RO301-69830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Inesi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Prasad, A.M., Inesi, G. (2012). Analysis of Calcium Transients in Cardiac Myocytes and Assessment of the Sarcoplasmic Reticulum Ca2+-ATPase Contribution. In: DiMario, J. (eds) Myogenesis. Methods in Molecular Biology, vol 798. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-343-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-343-1_24

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-342-4

  • Online ISBN: 978-1-61779-343-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics