Skip to main content

Dynamic Light Scattering to Study Allosteric Regulation

  • Protocol
  • First Online:
Book cover Allostery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 796))

Abstract

The Escherichia coli ClpA protein, like many AAA+ motor proteins, is allosterically regulated by nucleotide binding. We have combined analytical ultracentrifugation approaches with dynamic light scattering (DLS) to examine the self-association properties and the allosteric linkage of assembly to nucleotide binding. Here we present a protocol for the rapid and precise determination of the diffusion coefficient using DLS measurements in a model-independent fashion. When combined with analytical ultracentrifugation experiments, such an approach can yield a more complete understanding of the hydrodynamic and thermodynamic properties of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh, S. K., and Maurizi, M. R. (1994) Mutational analysis demonstrates different functional roles for the two ATP-binding sites in ClpAP protease from Escherichia coli, J Biol Chem 269, 29537–29545.

    PubMed  CAS  Google Scholar 

  2. Reid, B. G., Fenton, W. A., Horwich, A. L., and Weber-Ban, E. U. (2001) ClpA mediates directional translocation of substrate proteins into the ClpP protease, Proc Natl Acad Sci USA 98, 3768–3772.

    Article  PubMed  CAS  Google Scholar 

  3. Katayama, Y., Gottesman, S., Pumphrey, J., Rudikoff, S., Clark, W. P., and Maurizi, M. R. (1988) The two-component, ATP-dependent Clp protease of Escherichia coli. Purification, cloning, and mutational analysis of the ATP-binding component, J Biol Chem 263, 15226–15236.

    CAS  Google Scholar 

  4. Hwang, B. J., Woo, K. M., Goldberg, A. L., and Chung, C. H. (1988) Protease Ti, a new ATP-dependent protease in Escherichia coli, contains protein-activated ATPase and proteolytic functions in distinct subunits, J Biol Chem 263, 8727–8734.

    PubMed  CAS  Google Scholar 

  5. Weber-Ban, E. U., Reid, B. G., Miranker, A. D., and Horwich, A. L. (1999) Global unfolding of a substrate protein by the Hsp100 chaperone ClpA, Nature 401, 90–93.

    Article  PubMed  CAS  Google Scholar 

  6. Levchenko, I., Luo, L., and Baker, T. A. (1995) Disassembly of the Mu transposase tetramer by the ClpX chaperone, Genes & development 9, 2399–2408.

    Article  CAS  Google Scholar 

  7. Wickner, S., Gottesman, S., Skowyra, D., Hoskins, J., McKenney, K., and Maurizi, M. R. (1994) A molecular chaperone, ClpA, functions like DnaK and DnaJ, Proc Natl Acad Sci USA 91, 12218–12222.

    Article  PubMed  CAS  Google Scholar 

  8. Hoskins, J. R., Pak, M., Maurizi, M. R., and Wickner, S. (1998) The role of the ClpA chaperone in proteolysis by ClpAP, Proceedings of the National Academy of Sciences of the United States of America 95, 12135–12140.

    Article  PubMed  CAS  Google Scholar 

  9. Tucker, P. A., and Sallai, L. (2007) The AAA+ superfamily-a myriad of motions, Current opinion in structural biology 17, 641–652.

    Article  PubMed  CAS  Google Scholar 

  10. Neuwald, A. F., Aravind, L., Spouge, J. L., and Koonin, E. V. (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes, Genome research 9, 27–43.

    PubMed  CAS  Google Scholar 

  11. Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J. (1982) Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold, The EMBO journal 1, 945–951.

    PubMed  CAS  Google Scholar 

  12. Gottesman, S., Clark, W. P., and Maurizi, M. R. (1990) The ATP-dependent Clp protease of Escherichia coli. Sequence of clpA and identification of a Clp-specific substrate, J Biol Chem 265, 7886–7893.

    PubMed  CAS  Google Scholar 

  13. Colosimo, A., Brunori, M., and Wyman, J. (1976) Polysteric linkage, J Mol Biol 100, 47–57.

    Article  PubMed  CAS  Google Scholar 

  14. Veronese, P. K., Stafford, R. P., and Lucius, A. L. (2009) The Escherichia coli ClpA Molecular Chaperone Self-Assembles into Tetramers, Biochemistry 48, 9221–9233.

    Article  PubMed  CAS  Google Scholar 

  15. Rajendar, B., and Lucius, A. L. (2010) Molecular mechanism of polypeptide translocation catalyzed by the Escherichia coli ClpA protein translocase, J Mol Biol 399, 665–679.

    Article  PubMed  CAS  Google Scholar 

  16. Schuck, P. (2003) On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation, Analytical biochemistry 320, 104–124.

    Article  PubMed  CAS  Google Scholar 

  17. Veronese, P. K., Stafford, R. P., and Lucius, A. L. (2009) The Escherichia coli ClpA molecular chaperone self-assembles into tetramers, Biochemistry 48, 9221–9233.

    Article  PubMed  CAS  Google Scholar 

  18. Laue, T. (2004) Analytical ultracentrifugation: a powerful 'new' technology in drug discovery, Drug Discovery Today: Technologies 1, 309–315.

    Article  CAS  Google Scholar 

  19. Cole, J. L., and Hansen, J. C. (1999) Analytical Ultracentrifugation as a Contemporary Biomolecular Research Tool. Journal of Biomolecular Techniques 10, 163–176.

    PubMed  CAS  Google Scholar 

  20. Ralston, G. (1993) Introduction to Analytical Ultracentrifugation, Beckman Coulter Inc., Fullerton, CA.

    Google Scholar 

  21. McRorie, D. K., and Voelker, P. J. (1993) Self-Associating Systems in the Analytical Ultracentrifuge, Beckman Coulter Inc., Fullerton, CA.

    Google Scholar 

  22. Tinoco, I., Sauer, K., and Wang, J. C. (1995) Physical chemistry : principles and applications in biological sciences, 3rd ed., Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  23. Correia, J. J. (2000) Analysis of weight average sedimentation velocity data, Methods Enzymol 321, 81–100.

    Article  PubMed  CAS  Google Scholar 

  24. Correia, J. J., and Stafford, W. F. (2009) Extracting equilibrium constants from kinetically limited reacting systems, Methods Enzymol 455, 419–446.

    Article  PubMed  CAS  Google Scholar 

  25. Lohman, T. M., Chao, K., Green, J. M., Sage, S., and Runyon, G. T. (1989) Large-scale purification and characterization of the Escherichia coli rep gene product, J Biol Chem 264, 10139–10147.

    PubMed  CAS  Google Scholar 

  26. Williams, D. J., and Hall, K. B. (2000) Monte Carlo applications to thermal and chemical denaturation experiments of nucleic acids and proteins, Methods Enzymol 321, 330–352.

    Article  PubMed  CAS  Google Scholar 

  27. Dennis, E. K. (1972) Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy: The Method of Cumulants, The Journal of Chemical Physics 57, 4814–4820.

    Article  Google Scholar 

  28. Tanford, C. (1961) Physical chemistry of macromolecules, Wiley, New York,.

    Google Scholar 

  29. Cantor, C. R., and Schimmel, P. R. (1980) Techniques for the study of biological structure and function, W. H. Freeman, San Francisco.

    Google Scholar 

Download references

Acknowledgments

We thank Wilhelm Peters for alignment of the laser and pointing out many of the pitfalls discussed here. This work was supported by NSF grant MCB-0843746 to ALL and the University of Alabama Department of Chemistry Start-up Funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron L. Lucius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lucius, A.L., Veronese, P.K., Stafford, R.P. (2012). Dynamic Light Scattering to Study Allosteric Regulation. In: Fenton, A. (eds) Allostery. Methods in Molecular Biology, vol 796. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-334-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-334-9_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-333-2

  • Online ISBN: 978-1-61779-334-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics