Skip to main content

ELISPOT Assay for Neuroscience Research: Studying TNFα Secretion from Microglial Cells

  • Protocol
  • First Online:
Handbook of ELISPOT

Part of the book series: Methods in Molecular Biology ((MIMB,volume 792))

Abstract

The major application of ELISPOT assays is to study secretion of cytokines and chemokines from immune system cells. We adapted this assay to study TNFα secretion from microglial BV2 cells, which are similar in physiology to microglia in the nervous system. Stimulation of BV2 cells with 1 μg/mL LPS resulted in a robust secretion of TNFα. Unlike uniform round spots formed by TNFα secreted by immune system cells, BV2 cells produced spots with short zigzag “tails” indicating that BV2 cells were actively moving during the incubation. In spite of irregular shapes, spots could be easily counted using an ELISPOT reader. Our study has shown the feasibility of employing an ELISPOT assay as a tool for neuroscience research to study the mechanisms underlying protein secretion from microglial cells. In addition, due to its convenient format, ELISPOT can be used for high-throughput screening of the potency of novel drugs to stimulate or inhibit cytokine secretion by microglial cells in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sedgwick, J. D., and Holt, P. G. (1983) A solid-phase immunoenzymatic technique for the enumeration of specific antibody-secreting cells. J Immunol Methods 57, 301–309.

    Google Scholar 

  2. Sedgwick, J. D. (2005) ELISPOT assay: a personal retrospective. Methods Mol Biol 302, 3–14.

    Google Scholar 

  3. Czerkinsky, C. C., Nilsson, L. A., Nygren, H., Ouchterlony, O., and Tarkowski, A. (1983) A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods 65, 109–121.

    Google Scholar 

  4. Kalyuzhny, A. E. (2005) Chemistry and biology of the ELISPOT assay. Methods Mol Biol 302, 15–31.

    Google Scholar 

  5. Arlen, P., Tsang, K. Y., Marshall, J. L., Chen, A., Steinberg, S. M., Poole, D., et al.(2000) The use of a rapid ELISPOT assay to analyze peptide-specific immune responses in carcinoma patients to peptide vs. recombinant poxvirus vaccines. Cancer Immunol Immunother 49, 517–529.

    Google Scholar 

  6. Asai, T., Storkus, W. J., and Whiteside, T. L. (2000) Evaluation of the modified ELISPOT assay for gamma interferon production in cancer patients receiving antitumor vaccines. Clin Diagn Lab Immunol 7, 145–154.

    Google Scholar 

  7. Bienvenu, J., Monneret, G., Fabien, N., and Revillard, J. P. (2000) The clinical usefulness of the measurement of cytokines. Clin Chem Lab Med 38, 267–285.

    Google Scholar 

  8. Pass, H. A., Schwarz, S. L., Wunderlich, J. R., and Rosenberg, S. A. (1998) Immunization of patients with melanoma peptide vaccines: immunologic assessment using the ELISPOT assay. Cancer J Sci Am 4, 316–323.

    Google Scholar 

  9. Schmittel, A., Keilholz, U., Thiel, E., and Scheibenbogen, C. (2000) Quantification of tumor-specific T lymphocytes with the ELISPOT assay. J Immunother 23, 289–295.

    Google Scholar 

  10. Howell, D. M., Feldman, S. B., Kloser, P., and Fitzgerald-Bocarsly, P. (1994) Decreased frequency of functional natural interferon-producing cells in peripheral blood of patients with the acquired immune deficiency syndrome. Clin Immunol Immunopathol 71, 223–230.

    Google Scholar 

  11. Chapman, A. L., Munkanta, M., Wilkinson, K. A., Pathan, A. A., Ewer, K., Ayles, H., et al. (2002) Rapid detection of active and latent tuberculosis infection in HIV-positive individuals by enumeration of Mycobacterium tuberculosis-specific T cells. Aids 16, 2285–2293.

    Google Scholar 

  12. Kamath, A. T., Groat, N. L., Bean, A. G., and Britton, W. J. (2000) Protective effect of DNA immunization against mycobacterial infection is associated with the early emergence of ­interferon-gamma (IFN-gamma)-secreting ­lymphocytes. Clin Exp Immunol 120, 476–482.

    Google Scholar 

  13. Dolter, K. E., Evans, C. F., Ellefsen, B., Song, J., Boente-Carrera, M., Vittorino, R., et al. (2010) Immunogenicity, safety, biodistribution and persistence of ADVAX, a prophylactic DNA vaccine for HIV-1, delivered by in vivo electroporation. Vaccine. Epub 2010 Nov 18.

    Google Scholar 

  14. Salmon-Ceron, D., Durier, C., Desaint, C., Cuzin, L., Surenaud, M., Hamouda, N. B., et al. (2010) Immunogenicity and safety of an HIV-1 lipopeptide vaccine in healthy adults: a phase 2 placebo-controlled ANRS trial. AIDS 24, 2211–2223.

    Google Scholar 

  15. Tansey, M. G., and Goldberg, M. S. (2009) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37, 510–518. Epub 2009 Nov 10.

    Google Scholar 

  16. Park, K. M., and Bowers, W. J. (2010) Tumor necrosis factor-alpha mediated signaling in neuronal homeostasis and dysfunction. Cell 22, 977–983. Epub 2010 Jan 21.

    Google Scholar 

  17. Cunningham, A. J., Murray, C. A., O’Neill, L. A., Lynch, M. A., and O’Connor, J. J. (1996) Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett 203, 17–20.

    Google Scholar 

  18. Pickering, M., Cumiskey, D., and O’Connor, J. J. (2005) Actions of TNF-alpha on glutamatergic synaptic transmission in the central nervous system. Exp Physiol 90, 663–670. Epub 2005 Jun 8.

    Google Scholar 

  19. Pickering, M., and O’Connor, J. J. (2007) Pro-inflammatory cytokines and their effects in the dentate gyrus. Prog Brain Res 163, 339–354.

    Google Scholar 

  20. Tran, T. A., McCoy, M. K., Sporn, M. B., and Tansey, M. G. (2008) The synthetic triterpenoid CDDO-methyl ester modulates microglial activities, inhibits TNF production, and ­provides dopaminergic neuroprotection. J Neuroinflammation 5, 14.

    Google Scholar 

  21. Chakraborty, S., Kaushik, D. K., Gupta, M., and Basu, A. (2010) Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res 88, 1615–1631.

    Google Scholar 

  22. Vallejo, R., Tilley, D. M., Vogel, L., and Benyamin, R. (2010) The role of glia and the immune system in the development and ­maintenance of neuropathic pain. Pain 10, 167–184. Epub 2010 Apr 5.

    Google Scholar 

  23. Spicarova, D., and Palecek, J. (2010) Tumor necrosis factor alpha sensitizes spinal cord TRPV1 receptors to the endogenous agonist N-oleoyldopamine J Neuroinflammation 7, 49.

    Google Scholar 

  24. Austin, P. J., and Moalem-Taylor, G. (2010) The neuro-immune balance in neuropathic pain: Involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunology 229, 26–50. Epub 2010 Sep 25.

    Google Scholar 

  25. Blasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R., and Bistoni, F. (1990) Immortalization of murine microglial cells by a v-raf/v-myc ­carrying retrovirus. J Neuroimmunol 27, 229–237.

    Google Scholar 

  26. Hald, A., and Lotharius, J. (2005) Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp Neurol 193, 279–90.

    Google Scholar 

  27. Kalyuzhny, A., and Stark, S. (2001) A simple method to reduce the background and improve well-to-well reproducibility of staining in ELISPOT assays J Immunol Methods 257, 93–7.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander E. Kalyuzhny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hagen, J., Houchins, J.P., Kalyuzhny, A.E. (2012). ELISPOT Assay for Neuroscience Research: Studying TNFα Secretion from Microglial Cells. In: Kalyuzhny, A. (eds) Handbook of ELISPOT. Methods in Molecular Biology, vol 792. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-325-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-325-7_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-324-0

  • Online ISBN: 978-1-61779-325-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics