Skip to main content

Applications of Nanoscale Liquid Chromatography Coupled to Tandem Mass Spectrometry in Quantitative Studies of Protein Expression, Protein–Protein Interaction, and Protein Phosphorylation

  • Protocol
  • First Online:
Nanoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 790))

Abstract

Mass spectrometry can provide a very sensitive and rapid analysis of protein expression and can be used as an alternative to immunochemical methods to study protein–protein interaction and protein posttranslational modifications. In many circumstances, a functional study, such as one that aims to elucidate a specific signaling pathway or disease state, will require the detection and quantification of a specific set of proteins and their modifications. Very often, there will be no available antibody for some of the proteins in the set, and mass spectrometry will be the only option. This chapter describes a robust and efficient protocol for a small-scale sample preparation and a suite of separation and mass spectrometry techniques that allow the quantitative analysis of low femtomolar amounts of proteins that may be obtained from very limited amount of clinical specimens, affinity techniques, and cell sorting. The protocols can be used by researchers in the applied biomedical field and also in basic cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aebersold, R., Mann, M. (2003) Mass spectrometry-based proteomics. Nature 422, 198–207.

    Article  PubMed  CAS  Google Scholar 

  2. Fenn, J.B., Mann, M., Meng, C.K., et al. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71.

    Article  PubMed  CAS  Google Scholar 

  3. Gatlin, C.L., Kleemann, G..R., Hays, L.G., et al. (1998) Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography-microspray and nanospray mass spectrometry. Anal Biochem 263, 93–101.

    Article  PubMed  CAS  Google Scholar 

  4. Alldridge, L., Metodieva, G., Greenwood, C., et al. (2008) Proteome profiling of breast tumors by gel electrophoresis and nanoscale electrospray ionization mass spectrometry. J Proteome Res 7, 1458–1469.

    Article  PubMed  CAS  Google Scholar 

  5. Zaichick, S.V., Metodiev, M.V., Nelson, S.A., et al. (2009) The mating-specific Galpha interacts with a kinesin-14 and regulates pheromone-induced nuclear migration in budding yeast. Mol Biol Cell 20, 2820–2830.

    Article  PubMed  CAS  Google Scholar 

  6. Matheos, D., Metodiev, M., Muller, E., et al. (2004) Pheromone-induced polarization is dependent on the Fus3p MAPK acting through the formin Bni1p. J Cell Biol 165, 99–109.

    Article  PubMed  CAS  Google Scholar 

  7. Metodiev, M.V., Matheos, D., Rose, M.D., et al. (2002) Regulation of MAPK function by direct interaction with the mating-specific Galpha in yeast. Science 296, 1483–1486.

    Article  PubMed  CAS  Google Scholar 

  8. Metodiev, M.V., Timanova, A., Stone, D.E. (2004) Differential phosphoproteome profiling by affinity capture and tandem matrix-assisted laser desorption/ionization mass spectrometry. Proteomics 4, 1433–1438.

    Article  PubMed  CAS  Google Scholar 

  9. Tang, K., Page, J.S., Smith, R.D. (2004) Charge competition and the linear dynamic range of detection in electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 15, 1416–1423.

    Article  PubMed  CAS  Google Scholar 

  10. Patterson, S.D. Aebersold, R.H. (2003) Proteomics: the first decade and beyond. Nat Genet 33 Suppl, 311–323.

    Article  PubMed  CAS  Google Scholar 

  11. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  12. Pappin, D.J., Hojrup, P. Bleasby, A.J. (1993) Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol 3, 327–332.

    Article  PubMed  CAS  Google Scholar 

  13. Duncan, D.T., Craig, R., Link, A.J. (2005) Parallel tandem: a program for parallel processing of tandem mass spectra using PVM or MPI and X!Tandem. J Proteome Res 4, 1842–847.

    Article  PubMed  CAS  Google Scholar 

  14. Craig, R., Beavis, R.C. (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467.

    Article  PubMed  CAS  Google Scholar 

  15. Liu, H., Sadygov, R.G., Yates, J.R. 3rd. (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76, 4193–4201.

    Article  PubMed  CAS  Google Scholar 

  16. Gerber, S.A., Rush, J., Stemman, O., et al. (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100, 6940–6945.

    Article  PubMed  CAS  Google Scholar 

  17. Silva, J.C., Denny, R., Dorschel, C., et al. (2006) Simultaneous qualitative and quantitative analysis of the Escherichia coli proteome: a sweet tale. Mol Cell Proteomics 5, 589–607.

    PubMed  CAS  Google Scholar 

  18. Rauch, A., Bellew, M., Eng, J., et al. (2006) Computational Proteomics Analysis System (CPAS): an extensible, open-source analytic system for evaluating and publishing proteomic data and high throughput biological experiments. J Proteome Res 5, 112–121.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to extend his appreciation to Dr. Louise Alldridge, Dr. Christina Greenwood, Dr. Berthold Lausen, Dr. Roland Croner, and Mrs. Gergana B. Metodieva for their valuable contributions to the development of the tumor proteomics project at University of Essex.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metodi V. Metodiev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Metodiev, M.V. (2011). Applications of Nanoscale Liquid Chromatography Coupled to Tandem Mass Spectrometry in Quantitative Studies of Protein Expression, Protein–Protein Interaction, and Protein Phosphorylation. In: Toms, S., Weil, R. (eds) Nanoproteomics. Methods in Molecular Biology, vol 790. Humana Press. https://doi.org/10.1007/978-1-61779-319-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-319-6_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-318-9

  • Online ISBN: 978-1-61779-319-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics