Skip to main content

N-Linked Global Glycan Profiling by NanoLC Mass Spectrometry

  • Protocol
  • First Online:
Nanoproteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 790))

  • 2287 Accesses

Abstract

A method is detailed for the global profiling of underivatized N-linked glycans that are derived from complex protein mixtures. The method consists of five main steps that include the following: (1) protein denaturation; (2) enzymatic digestion; (3) solid phase extraction; (4) nanoLC MS analysis; and (5) data interpretation. Materials, methods, and algorithms for the identification of both glycan composition and structure are summarized. In addition, potential problems and their resolutions are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blow, N. (2009) Glycobiology: A spoonful of sugar. Nature 457, 617–620.

    Article  PubMed  CAS  Google Scholar 

  2. Wu, H.C., Meezan, E., Black, P.H., et al. (1969) Comparative Studies on Carbohydrate-Containing Membrane Components of Normal and Virus-Transformed Mouse Fibroblasts.I. Glucosamine-Labeling Patterns in 3 t3 Spontaneously Transformed 3 t3 and Sv-40-Transformed 3 t3 Cells. Biochemistry 8, 2509–2517.

    Article  PubMed  CAS  Google Scholar 

  3. Bereman, M.S., Williams, T.I., Muddiman, D.C. (2009) Development of a nanoLC LTQ Orbitrap Mass Spectrometric Method for Profiling Glycans Derived from Plasma from Healthy, Benign Tumor Control, and Epithelial Ovarian Cancer Patients. Anal Chem 81, 1130–1136.

    Article  PubMed  CAS  Google Scholar 

  4. Li, B., An, H.J., Kirmiz, C., et al. (2008) Glycoproteomic analyses of ovarian cancer cell lines and sera from ovarian cancer patients show distinct glycosylation changes in individual proteins. J Proteome Res 7, 3776–3788.

    Article  PubMed  CAS  Google Scholar 

  5. Kirmiz, C., Li, B.S., An, H.J., et al. (2007) A serum glycomics approach to breast cancer biomarkers, Mol Cell Proteomics 6, 43–55.

    PubMed  CAS  Google Scholar 

  6. An, H.J., Miyamoto, S., Lancaster, K.S., et al. (2006) Profiling of glycans in serum for the discovery of potential biomarkers for ovarian cancer. J Proteome Res 5, 1626–1635.

    Article  PubMed  CAS  Google Scholar 

  7. Mechref, Y., Hussein, A., Bekesova, S., et al. (2009) Quantitative Serum Glycomics of Esophageal Adenocarcinoma and Other Esophageal Disease Onsets. J Proteome Res 8, 2656–2666.

    Article  PubMed  CAS  Google Scholar 

  8. Isailovic, D., Kurulugama, R.T., Plasencia, M.D., et al. (2008) Profiling of human serum glycans associated with liver cancer and cirrhosis by IMS-MS. J Proteome Res 7, 1109–1117.

    Article  PubMed  CAS  Google Scholar 

  9. Kyselova, Z., Mechref, Y., Kang, P., et al. (2008) Breast cancer diagnosis and prognosis through quantitative measurements of serum glycan profiles. Clin Chem 54, 1166–1175.

    Article  PubMed  CAS  Google Scholar 

  10. Kyselova, Z., Mechref, Y., Al Bataineh, M.M., et al. (2007) Alterations in the serum glycome due to metastatic prostate cancer. J Proteome Res 6, 1822–1832.

    Article  PubMed  CAS  Google Scholar 

  11. Harvey, D.J. (1999) Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 18, 349–450.

    Article  PubMed  CAS  Google Scholar 

  12. Karlsson, N.G., Wilson, N.L., Wirth, H.J., et al. (2004) Negative ion graphitised carbon nano-liquid chromatography/mass spectrometry increases sensitivity for glycoprotein oligosaccharide analysis. Rapid Commun Mass Spectrom 18, 2282–2292.

    Article  PubMed  CAS  Google Scholar 

  13. Barroso, B., Dijkstra, R., Geerts, M., et al. (2002) On-line high-performance liquid chromatography/mass spectrometric characterization of native oligosaccharides from glycoproteins. Rapid Commun Mass Spectrom 16, 1320–1329.

    Article  PubMed  CAS  Google Scholar 

  14. Bahr, U., Pfenninger, A., Karas, M., et al. (1997) High sensitivity analysis of neutral underivatized oligosaccharides by nanoelectrospray mass spectrometry. Anal Chem 69, 4530–4535.

    Article  PubMed  CAS  Google Scholar 

  15. Karas, M., Bahr, U., Dulcks, T. (2000) Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine. Fresenius J Anal Chem 366, 669–676.

    Article  PubMed  CAS  Google Scholar 

  16. Ciucanu, I., Kerek, F. (1984) A Simple and Rapid Method for the Permethylation of Carbohydrates. Carbohydr Res 131, 209–217.

    Article  CAS  Google Scholar 

  17. Dell, A. (1990) Preparation and Desorption Mass-Spectrometry of Permethyl and Peracetyl Derivatives of Oligosaccharides. Methods Enzymol 193, 647–660.

    Article  PubMed  CAS  Google Scholar 

  18. Pabst, M., Bondili, J.S., Stadlmann, J., et al. (2007) Mass plus retention time  =  structure: A strategy for the analysis of N-glycans by carbon LC-ESI-MS and its application to fibrin N-glycans. Anal Chem 79, 5051–5057.

    Article  PubMed  CAS  Google Scholar 

  19. Tretter, V., Altmann, F., März, L. (1991) Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha 1–3 to the asparagine-linked N-acetylglucosamine residue. Eur J Biochem 199, 647–652.

    Article  PubMed  CAS  Google Scholar 

  20. Kuster, B., Harvey, D.J. (1997) Ammonium containing buffers should be avoided during enzymatic release of glycans from glycoproteins when followed by reducing terminal derivatization. Glycobiology 7, vii-ix.

    Google Scholar 

  21. Bereman, M.S., Young, D.D., Deiters, A., et al. (2009) Development of a robust and high throughput method for profiling N-linked glycans derived from plasma glycoproteins by NanoLC-FTICR mass spectrometry. J Proteome Res 8, 3764–3770.

    Article  PubMed  CAS  Google Scholar 

  22. Tarentino, A.L., Plummer, T.H., Jr. (1994) Enzymatic deglycosylation of asparagine-linked glycans: purification, properties, and specificity of oligosaccharide-cleaving enzymes from Flavobacterium meningosepticum. Methods Enzymol 230, 44–57.

    Article  PubMed  CAS  Google Scholar 

  23. Plummer, T.H., Jr., Elder, J.H., Alexander, S., et al. (1984) Demonstration of peptide:N-glycosidase F activity in endo-beta-N-acetylglucosaminidase F preparations. J Biol Chem 259, 10700–10704.

    PubMed  CAS  Google Scholar 

  24. Tarentino, A.L., Gomez, C.M., Plummer, T.H. (1985) Deglycosylation of Asparagine-Linked Glycans by Peptide - N-Glycosidase-F. Biochemistry 24, 4665–4671.

    Article  PubMed  CAS  Google Scholar 

  25. Williams, T.I., Saggese, D.A., Toups, K.L., et al. (2008) Investigations with O-linked protein Glycosylations by Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J Mass Spectrom 43, 1215–1223.

    Article  PubMed  CAS  Google Scholar 

  26. Davies, M.J., Smith, K.D., Carruthers, R.A., et al. (1993) Use of a Porous Graphitized Carbon Column for the High-Performance Liquid-Chromatography of Oligosaccharides, Alditols and Glycopeptides with Subsequent Mass-Spectrometry Analysis. J Chromatogr 646, 317–326.

    Article  PubMed  CAS  Google Scholar 

  27. Alpert, A.J. (1990) Hydrophilic-Interaction Chromatography for the Separation of Peptides, Nucleic-Acids and Other Polar Compounds. J Chromatogr 499, 177–196.

    Article  PubMed  CAS  Google Scholar 

  28. Pabst, M., Altmann, F. (2008) Influence of electrosorption, solvent, temperature, and ion polarity on the performance of LC-ESI-MS using graphitic carbon for acidic oligosaccharides. Anal Chem 80, 7534–7542.

    Article  PubMed  CAS  Google Scholar 

  29. Bereman, M.S., Muddiman, D.C. (2010) The effects of abundant plasma protein depletion on global glycan profiling using nanoLC FT-ICR mass spectrometry. Anal Bioanal Chem 396, 1473–1479.

    Article  PubMed  CAS  Google Scholar 

  30. Ceroni, A., Maass, K., Geyer, H., et al. (2008) GlycoWorkbench: A tool for the computer-assisted annotation of mass spectra of Glycans. J Proteome Res 7, 1650–1659.

    Article  PubMed  CAS  Google Scholar 

  31. Maass, K., Ranzinger, R., Geyer, H., et al. (2007) “Glyco-peakfinder” – de novo composition analysis of glycoconjugates. Proteomics 7, 4435–4444.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Muddiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bereman, M.S., Muddiman, D.C. (2011). N-Linked Global Glycan Profiling by NanoLC Mass Spectrometry. In: Toms, S., Weil, R. (eds) Nanoproteomics. Methods in Molecular Biology, vol 790. Humana Press. https://doi.org/10.1007/978-1-61779-319-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-319-6_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-318-9

  • Online ISBN: 978-1-61779-319-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics