Skip to main content

Inhibition of DNA Methylation in Somatic Cells

  • Protocol
  • First Online:
Epigenetics Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 791))

Abstract

DNA methylation plays a significant role in the expression of the genetic code and affects early growth and development through its influence on gene expression. DNA methyltransferase 1 (Dnmt1) is the enzyme responsible for maintaining the methylation marks through cell division. However, the de novo methyltransferases, Dnmt3a and Dnmt3b, can also contribute to the maintenance of the methylation pattern. Manipulation of these enzymes, especially Dnmt1, provides a means to alter DNA methylation levels. Manipulation of the DNA methylation pattern of somatic cells will allow a better understanding of the different molecular process associated with chromatin structure and gene expression. Different approaches to artificially manipulate the expression of Dnmt1 in somatic cells include the addition of 5-azacytidine, culture of cells for an extended period of time, and the use of small interfering RNA technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giraldo, A. M., Lynn, J. W., Purpera, M. N., Vaught, T. D., Ayares, D. L., Godke, R. A., and Bondioli, K. R. (2009). Inhibition of DNA methyltransferase 1 expression in bovine fibroblast cells used for nuclear transfer. Reprod. Fertil. Dev. 21, 785–795.

    Article  PubMed  CAS  Google Scholar 

  2. Koukalova, B., Fojtova, M., Lim, K. Y., Fulnecek, J., Leitch, A. R., and Kovarik, A. (2005). Dedifferentiation of tobacco cells is associated with ribosomal RNA gene hypomethylation, increased transcription, and chromatin alterations. Plant Physiol 139, 275–286.

    Article  PubMed  CAS  Google Scholar 

  3. Yeo, S., Jeong, S., Kim, J., Han, J. S., Han, Y. M., and Kang, Y. K. (2007). Characterization of DNA methylation change in stem cell marker genes during differentiation of human embryonic stem cells. Biochem. Biophys. Res Commun. 359, 536–542.

    Article  PubMed  CAS  Google Scholar 

  4. Chen, T., Ueda, Y., Dodge, J. E., Wang Z., Li, E. (2003). Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol Cell Biol. 23, 5594–5605.

    Article  PubMed  CAS  Google Scholar 

  5. Enright, B. P., Kubota, C., Yang, X., and Tian, X. C. (2003). Epigenetic characteristics and development of embryos cloned from donor cells treated by trichostatin A or 5-aza-2’-deoxycytidine. Biol Reprod 69, 896–901.

    Article  PubMed  CAS  Google Scholar 

  6. Gaudet, F., Hodgson, J. G., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J. W., Leonhardt, H., and Jaenisch, R. (2003). Induction of tumors in mice by genomic hypomethylation. Science 300, 489–492.

    Article  PubMed  CAS  Google Scholar 

  7. Leu, Y. W., Rahmatpanah, F., Shi, H., Wei, S. H., Liu, J. C., Yan, P. S., and Huang, T. H. (2003). Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res. 63, 6110–6115.

    PubMed  CAS  Google Scholar 

  8. Suzuki, M., Sunaga, N., Shames, D. S., Toyooka, S., Gazdar, A. F., and Minna, J. D. (2004). RNA interference-mediated knockdown of DNA methyltransferase 1 leads to promoter demethylation and gene re-expression in human lung and breast cancer cells. Cancer Res 64, 3137–3143.

    Article  PubMed  CAS  Google Scholar 

  9. Giraldo, A. M., Hylan, D. A., Ballard, C. B., Purpera, M. N., Vaught, T. D., Lynn, J. W., Godke, R. A., and Bondioli, K. R. (2008). Effect of epigenetic modifications of donor somatic cells on the subsequent chromatin remodeling of cloned bovine embryos. Biol. Reprod. 78, 832–840.

    Article  PubMed  CAS  Google Scholar 

  10. Li, E., Bestor, T. H., and Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926.

    Article  PubMed  CAS  Google Scholar 

  11. Lei, H., Oh, S. P., Okano, M., Juttermann, R., Goss, K. A., Jaenisch, R., and Li, E. (1996). De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122, 3195–3205.

    PubMed  CAS  Google Scholar 

  12. Wilson, V. L. and Jones, P. A. (1983). DNA methylation decreases in aging but not in immortal cells. Science 220, 1055–1057.

    Article  PubMed  CAS  Google Scholar 

  13. Moore, K., Wroclawska, E., Kramer, J. M., and Goica, S. L. (2006). Cell type and culture over time effect DNA methyltransferase 1 expression in bovine donor fibroblast cells. Reprod. Fertil. Dev. 19, 151.

    Article  Google Scholar 

  14. Adams, A. M., Pratt, S. L., and Stice, S. L. (2005). Knockdown of the Dnmt1s transcript using small interfering RNA in primary murine and bovine fibroblast cells. Mol. Reprod Dev. 72, 311–319.

    Article  PubMed  CAS  Google Scholar 

  15. Jones, P. A., Taylor, S. M. (1980). Cellular differentiation, cytidine analogs and DNA methylation. Cell. 20, 85–93.

    Article  PubMed  CAS  Google Scholar 

  16. Villar-Garea, A., Fraga, M. F., Espada, J., Esteller, M. (2003). Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res. 63, 4984–4989.

    PubMed  CAS  Google Scholar 

  17. Christman, J. K. (2002). 5-Azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21, 5483–5495.

    Article  PubMed  CAS  Google Scholar 

  18. Juttermann, R., Li, E., and Jaenisch, R. (1994). Toxicity of 5-aza-2’-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc. Natl. Acad. Sci. U. S. A 91, 11797–11801.

    Article  PubMed  CAS  Google Scholar 

  19. Li, L. H., Olin, E. J., Buskirk, H. H., Reineke, L. M. (1970). Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res. 30, 2760–2769.

    PubMed  CAS  Google Scholar 

  20. Santos, F., Dean, W. (2006). Using immunofluorescence to observe methylation changes in mammalian preimplantation embryos. Methods Mol Biol. 325, 129–37.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelica M. Giraldo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Giraldo, A.M., Bondioli, K.R. (2011). Inhibition of DNA Methylation in Somatic Cells. In: Tollefsbol, T. (eds) Epigenetics Protocols. Methods in Molecular Biology, vol 791. Humana Press. https://doi.org/10.1007/978-1-61779-316-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-316-5_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-315-8

  • Online ISBN: 978-1-61779-316-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics