Skip to main content

The Intracranial Self-Stimulation Procedure Provides Quantitative Measures of Brain Reward Function

  • Protocol
  • First Online:
Mood and Anxiety Related Phenotypes in Mice

Part of the book series: Neuromethods ((NM,volume 63))

Abstract

Since the discovery of the intracranial self-stimulation (ICSS) procedure in the 1950s, studies using this method have greatly expanded our knowledge of the neurobiology of motivation and reward. ICSS is an operant behavioral procedure in which laboratory rodents prepared with stimulating electrodes learn to deliver brief electrical pulses into brain structures that are part of the brain reward pathway. The ICSS procedure is unique because it enables researchers to quantitatively assess brain reward function in laboratory animals. This procedure has predominantly been used in rats until recently and is now also used in mice. With the recent advances in genetic engineering in this species, the mouse serves as an excellent subject for investigating the neurobiology of reward and motivation. The ICSS procedure, however, is often perceived as too difficult and elaborate to perform in mice, despite the advantages of this technique and the unique research opportunities that mice offer. This chapter describes the two most commonly used ICSS procedures in mice – the discrete-trial current-intensity and rate-frequency curve-shift procedures – and provides suggestions for the successful implementation of ICSS in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olds J (1956) Pleasure center in the brain. Sci Am 195: 105–116

    Article  Google Scholar 

  2. Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J Comp Physiol Psychol 47(6): 419–427

    Article  PubMed  CAS  Google Scholar 

  3. Yeomans JS (1990) Principles of Brain Stimulation. New York: Oxford University Press

    Google Scholar 

  4. Cazala P, Cardo B (1972) Etude préliminaire du comportement d’autostimulation chez la souris. Physiol Behav 9(2): 255–257

    Article  PubMed  CAS  Google Scholar 

  5. Cazala P, Cazals Y, Cardo B (1974) Hypothalamic self-stimulation in three inbred strains of mice. Brain Res 81(1): 159–167

    Article  PubMed  CAS  Google Scholar 

  6. Cazala P (1976) Effects of d- and l-Amphetamine on Dorsal and Ventral Hypothalamic Self-Stimulation in Three Inbred Strains of Mice. Pharmacol Biochem Behav 5(5): 505–510

    Article  PubMed  CAS  Google Scholar 

  7. Tran AH, Tamura R, Uwano T et al (2002) Altered accumbens neural response to prediction of reward associated with place in ­dopamine D2 receptor knockout mice. Proc Natl Acad Sci USA 99(13): 8986–8991

    Article  PubMed  CAS  Google Scholar 

  8. Tran AH, Tamura R, Uwano T et al (2005) Dopamine D1 receptors involved in locomotor activity and accumbens neural responses to prediction of reward associated with place. Proc Natl Acad Sci USA 102(6): 2117–2122

    Article  PubMed  CAS  Google Scholar 

  9. Elmer GI, Pieper JO, Levy J et al (2005) Brain stimulation and morphine reward deficits in dopamine D2 receptor-deficient mice. Psychopharmacology (Berl) 182(1): 33–44

    Article  CAS  Google Scholar 

  10. American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders. 4th edn, text rev. Washington, DC: American Psychiatric Press.

    Google Scholar 

  11. Bruijnzeel AW (2009) kappa-Opioid receptor signaling and brain reward function. Brain Res Rev 62(1): 127–146

    Article  PubMed  CAS  Google Scholar 

  12. DiNieri JA, Nemeth CL, Parsegian A et al (2009) Altered sensitivity to rewarding and aversive drugs in mice with inducible disruption of cAMP response element-binding protein function within the nucleus accumbens. J Neurosci 29(6): 1855–1859

    Article  PubMed  CAS  Google Scholar 

  13. Roybal K, Theobold D, Graham A et al (2007) Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA 104(15): 6406–6411

    Article  PubMed  CAS  Google Scholar 

  14. Kokkinidis L, Zacharko RM (1980) Intracranial self-stimulation in mice using a modified hole-board task: effects of d-amphetamine. Psychopharmacology (Berl) 68(2): 169–171

    Article  CAS  Google Scholar 

  15. Fish EW, Riday TT, McGuigan MM et al (2010) Alcohol, cocaine, and brain stimulation-reward in C57Bl6/J and DBA2/J mice. Alcohol Clin Exp Res 34(1): 81–89

    Article  PubMed  CAS  Google Scholar 

  16. Gilliss B, Malanga CJ, Pieper JO et al (2002) Cocaine and SKF-82958 potentiate brain stimulation reward in Swiss-Webster mice. Psychopharmacology (Berl) 163(2): 238–248

    Article  CAS  Google Scholar 

  17. Straub CJ, WA Jr, Rudolph U (2010) Diazepam and cocaine potentiate brain stimulation reward in C57BL/6J mice. Behav Brain Res 206(1): 17–20

    Article  PubMed  CAS  Google Scholar 

  18. Johnson PM, Hollander JA, Kenny PJ (2008) Decreased brain reward function during nicotine withdrawal in C57BL6 mice: evidence from intracranial self-stimulation (ICSS) studies. Pharmacol Biochem Behav 90(3): 409–415

    Article  PubMed  CAS  Google Scholar 

  19. Stoker AK, Semenova S, Markou A (2008) Affective and somatic aspects of spontaneous and precipitated nicotine withdrawal in C57BL/6J and BALB/cByJ mice. Neuropharmacology 54(8): 1223–1232

    Article  PubMed  CAS  Google Scholar 

  20. Kornetsky C, Esposito RU (1979) Euphorigenic drugs: effects on the reward pathways of the brain. Fed Proc 38(11): 2473–2476

    PubMed  CAS  Google Scholar 

  21. Campbell KA, Evans G, Gallistel CR (1985) A microcomputer-based method for physiologically interpretable measurement of the rewarding efficacy of brain stimulation. Physiol Behav 35(3): 395–403

    Article  PubMed  CAS  Google Scholar 

  22. Gill BM, Knapp CM, Kornetsky C (2004) The effects of cocaine on the rate independent brain stimulation reward threshold in the mouse. Pharmacol Biochem Behav 79(1): 165–170

    Article  PubMed  CAS  Google Scholar 

  23. Paxinos G, Franklin KBJ, The mouse brain in stereotaxic coordinates (second ed.). 2001, Academic Press: San Diego.

    Google Scholar 

  24. Amitai N, Semenova S, Markou A (2009) Clozapine attenuates disruptions in response inhibition and task efficiency induced by repeated phencyclidine administration in the intracranial self-stimulation procedure. Eur J Pharmacol 602(1): 78–84

    Article  PubMed  CAS  Google Scholar 

  25. Carlezon WA Jr, Chartoff EH (2007) Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protoc 2(11): 2987–2995

    Article  PubMed  CAS  Google Scholar 

  26. Elmer GI, Pieper JO, Hamilton LR et al (2010) Qualitative differences between C57BL/6J and DBA/2J mice in morphine potentiation of brain stimulation reward and intravenous self-administration. Psychopharmacology (Berl) 208(2): 309–321

    Article  CAS  Google Scholar 

  27. Ikeda K, Moss SJ, Fowler SC et al (2001) Comparison of two intracranial self-stimulation (ICSS) paradigms in C57BL/6 mice: head-dipping and place-learning. Behav Brain Res 126(1–2): 49–56

    Article  PubMed  CAS  Google Scholar 

  28. Markou A, Koob GF (1992) Construct validity of a self-stimulation threshold paradigm: effects of reward and performance manipulations. Physiol Behav 51(1): 111–119

    Article  PubMed  CAS  Google Scholar 

  29. Cazala P (1980) Effect of clonidine and phentolamine on self-stimulation behavior in the dorsal and ventral regions of the lateral hypothalamus in mice. Psychopharmacology (Berl) 68(2): 173–177

    Article  CAS  Google Scholar 

  30. Cazala P, Guenet JL (1980) The recombinant inbred strains: a tool for the genetic analysis of differences observed in the self-stimulation behaviour of the mouse. Physiol Behav 24(6): 1057–1060

    Article  PubMed  CAS  Google Scholar 

  31. Garrigues AM, Cazala P (1983) Central catecholamine metabolism and hypothalamic self-stimulation behaviour in two inbred strains of mice. Brain Res 265(2): 265–271

    Article  PubMed  CAS  Google Scholar 

  32. Zacharko RM, Bowers WJ, Kokkinidis L et al (1983) Region-specific reductions of intracranial self-stimulation after uncontrollable stress: possible effects on reward processes. Behav Brain Res 9(2): 129–141

    Article  PubMed  CAS  Google Scholar 

  33. Bowers W, Hamilton M, Zacharko RM et al (1985) Differential effects of pimozide on response-rate and choice accuracy in a self-stimulation paradigm in mice. Pharmacol Biochem Behav 22(4): 521–526

    Article  PubMed  CAS  Google Scholar 

  34. Kokkinidis L, Zacharko RM, Anisman H (1986) Amphetamine withdrawal: a behavioral evaluation. Life Sci 38(17): 1617–1623

    Article  PubMed  CAS  Google Scholar 

  35. Zacharko RM, Lalonde GT, Kasian M et al (1987) Strain-specific effects of inescapable shock on intracranial self-stimulation from the nucleus accumbens. Brain Res 426(1): 164–168

    Article  PubMed  CAS  Google Scholar 

  36. Zacharko RM, Gilmore W, MacNeil G et al (1990) Stressor induced variations of intracranial self-stimulation from the mesocortex in several strains of mice. Brain Res 533(2): 353–357

    Article  PubMed  CAS  Google Scholar 

  37. Zacharko RM, Kasian M, MacNeil G et al (1990) Stressor-induced behavioral alterations in intracranial self-stimulation from the ventral tegmental area: evidence for regional variations. Brain Res Bull 25(4): 617–621

    Article  PubMed  CAS  Google Scholar 

  38. Zacharko RM, Kasian M, Irwin J et al (1990) Behavioral characterization of intracranial self-stimulation from mesolimbic, mesocortical, nigrostriatal, hypothalamic and extra-hypothalamic sites in the non-inbred CD-1 mouse strain. Behav Brain Res 36(3): 251–281

    Article  PubMed  CAS  Google Scholar 

  39. Wolfe C, Zacharko RM (1991) Desmethylimip­ramine promotes recovery of self-stimulation from the prefrontal cortex following footshock. Brain Res Bull 27(5): 601–604

    Article  PubMed  CAS  Google Scholar 

  40. Hebb AL, Zacharko RM, Anisman H (1998) Self-stimulation from the mesencephalon following intraventricular interleukin-2 administration. Brain Res Bull 45(6): 549–556

    Article  PubMed  CAS  Google Scholar 

  41. Yavich L, Tiihonen J (2000) In vivo voltammetry with removable carbon fibre electrodes in freely-moving mice: dopamine release during intracranial self-stimulation. J Neurosci Methods 104(1): 55–63

    Article  PubMed  CAS  Google Scholar 

  42. Yavich L, Tiihonen J (2000) Patterns of dopamine overflow in mouse nucleus accumbens during intracranial self-stimulation. Neurosci Lett 293(1): 41–44

    Article  PubMed  CAS  Google Scholar 

  43. Hebb AL, Zacharko RM, Gauthier M et al (2003) Exposure of mice to a predator odor increases acoustic startle but does not disrupt the rewarding properties of VTA intracranial self-stimulation. Brain Res 982(2): 195–210

    Article  PubMed  CAS  Google Scholar 

  44. Hebb AL, Zacharko RM (2003) Central D-Ala2-Met5-enkephalinamide μ/δ-opioid receptor activation blocks behavioral sensitization to cholecystokinin in CD-1 mice. Brain Res 970(1–2): 20–34

    Article  PubMed  CAS  Google Scholar 

  45. Oksman M, Tanila H, Yavich L (2006) Brain reward in the absence of alpha-synuclein. Neuroreport 17(11): 1191–1194

    Article  PubMed  CAS  Google Scholar 

  46. Takahashi T, Zhu Y, Hata T et al (2009) Intracranial self-stimulation enhances neurogenesis in hippocampus of adult mice and rats. Neuroscience 158(2): 402–411

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institute on Drug Abuse grant R01DA232090 to AM. We wish to thank Dr. Nurith Amitai and Dr. Berend Olivier for their insightful comments and input during the preparation of this manuscript, Mr. Mike Arends for his editorial assistance, and Ms. Janet Hightower for her assistance with figure preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athina Markou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Stoker, A.K., Markou, A. (2011). The Intracranial Self-Stimulation Procedure Provides Quantitative Measures of Brain Reward Function. In: Gould, T. (eds) Mood and Anxiety Related Phenotypes in Mice. Neuromethods, vol 63. Humana Press. https://doi.org/10.1007/978-1-61779-313-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-313-4_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-312-7

  • Online ISBN: 978-1-61779-313-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics