Skip to main content

Focal Cerebral Ischemia

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 788))

Abstract

Rodent models of focal cerebral ischemia have been extremely useful in elucidating pathomechanisms of human stroke. Most commonly, a monofilament is advanced through the internal carotid artery of rodents to occlude the origin of the middle cerebral artery thus leading to critical ischemia in the corresponding vascular territory. The filament can be removed after different occlusion times allowing reperfusion (transient middle cerebral artery occlusion (MCAO) model) or is left permanently within the internal carotid artery (permanent MCAO model) both mimicking clinical thromboembolic stroke in which the occluding clot may resolve spontaneously or after thrombolysis, or may persist. Overall, the occlusion time determines the extent of ischemic brain damage, but infarcts still grow during reperfusion, a process involving complex interactions between platelets, endothelial cells, immune cells, and the coagulation system.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison D. T., and Murray, C. J. L. (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet. 367, 1747–1757.

    Article  PubMed  Google Scholar 

  2. Kleinschnitz, C., Stoll, G., Bendszus, M., Schuh, K., Pauer H. U., Burfeind, P., Renné, C., Gailani, D., Nieswandt, B., and Renné, T. (2006) Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. J. Exp. Med. 20, 513–518.

    Article  Google Scholar 

  3. Kleinschnitz, C., Pozgajova, M., Pham, M., Bendszus, M., Nieswandt, B., and Stoll, G. (2007) Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation. 115, 2323–2330.

    Article  PubMed  CAS  Google Scholar 

  4. Kleinschnitz, C., De Meyer, S. F., Schwarz, T., Austinat, M., Vanhoorelbeke, K., Nieswandt, B., Deckmyn, H., and Stoll, G. (2009) Deficiency of von Willebrand factor protects mice from ischemic stroke. Blood. 113, 3600–3603.

    Article  PubMed  CAS  Google Scholar 

  5. Stoll, G., Kleinschnitz, C., and Nieswandt, B. (2008) Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatments. Blood. 112, 3555–3562.

    Article  PubMed  CAS  Google Scholar 

  6. Carmichael S. T. (2005) Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx. 2, 396–409.

    Article  PubMed  Google Scholar 

  7. Traystman R. J. (2003) Animal models of focal and global cerebral ischemia. ILAR J. 44, 85–95.

    PubMed  CAS  Google Scholar 

  8. Kleinschnitz, C., Braeuninger, S., Pham, M., Austinat, M., Nölte, I., Renné, T., Nieswandt, B., Bendszus, M., and Stoll, G. (2008) Blocking of platelets or intrinsic coagulation pathway-driven thrombosis does not prevent cerebral infarctions induced by photothrombosis. Stroke 39, 1262–1268.

    Article  PubMed  Google Scholar 

  9. Koizumi, J., Yoshida, Y., Nazakawa, T., and Ooneda, G. (1986) Experimental studies of ischemic brain edema: A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn. J. Stroke. 8, 1–8.

    Article  Google Scholar 

  10. Longa, E. Z., Weinstein, P. R., Carlson, S., and Cummins, R. (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 20, 84–91.

    Article  PubMed  CAS  Google Scholar 

  11. Belayev, L., Alonso, O. F., Busto , R., Zhao, W., and Ginsberg, M. D. (1996) Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke. 27, 1616–1623.

    CAS  Google Scholar 

  12. Clark, W. M., Lessov, N. S., Dixon, M. P., and Eckenstein, F. (1997) Monofilament intraluminal middle cerebral artery occlusion in the mouse. Neurol. Res. 19, 641–648.

    PubMed  CAS  Google Scholar 

  13. Stroke therapy academic industry roundtable (STAIR). (1999) Recommendations for ­standards regarding preclinical neuroprotective and restorative drug development. Stroke 30, 2752–2758.

    Article  Google Scholar 

  14. Braeuninger, S., and Kleinschnitz, C. (2009) Rodent models of focal cerebral ischemia: procedural pitfalls and translational problems. Exp. Transl. Stroke Med. 1: 8.

    Article  PubMed  Google Scholar 

  15. Kirsch, J. R., Traystman, R. J., and Hurn, P. D. (1996) Anesthetics and cerebroprotection: experimental aspects. Int. Anesthesiol. Clin. 34, 73–93.

    Article  PubMed  CAS  Google Scholar 

  16. Zausinger, S., Baethmann, A., and Schmid-Elsaesser, R. (2002) Anesthetic methods in rats determine outcome after experimental focal cerebral ischemia: mechanical ventilation is required to obtain controlled experimental conditions. Brain Res. Brain Res. Protoc. 9, 112–121.

    Article  PubMed  CAS  Google Scholar 

  17. Busto, R., Dietrich, W. D., Globus, M. Y., Valdés, I., Scheinberg, P., and Ginsberg, M. D. (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J. Cereb. Blood Flow Metab. 7, 729–738.

    Article  PubMed  CAS  Google Scholar 

  18. Bederson, J. B., Pitts, L. H., Tsuji, M., Nishimura, M. C., Davis, R. L., and Bartkowski, H. (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17, 472–476.

    Article  PubMed  CAS  Google Scholar 

  19. Moran, P. M., Higgins, L. S., Cordell, B., and Moser, P. C. (1995) Age-related learning deficits in transgenic mice expressing the 751-amino acid isoform of human β-amyloid precursor protein. Proc. Natl. Acad. Sci. USA 92, 5341–5345.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mrs. A. Götz for making the illustrating MCAO photographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Stoll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Braeuninger, S., Kleinschnitz, C., Nieswandt, B., Stoll, G. (2012). Focal Cerebral Ischemia. In: Gibbins, J., Mahaut-Smith, M. (eds) Platelets and Megakaryocytes. Methods in Molecular Biology, vol 788. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-307-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-307-3_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-306-6

  • Online ISBN: 978-1-61779-307-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics