Skip to main content

Measurement of Platelet Microparticles

  • Protocol
  • First Online:
Platelets and Megakaryocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 788))

Abstract

Platelet microparticles are submicron vesicles that can support thrombin generation on externalized negatively charged phospholipids. Increased numbers of circulating platelet microparticles have been investigated as the basis of hypercoagulability in a variety of prothrombotic conditions. Measurement of platelet microparticles is not standardized and a number of preanalytic considerations can influence accurate analysis. We describe methodology for light scatter-based flow cytometry as well as impedance-based flow cytometry for the enumeration and characterization of platelet microparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berckmans, R. J., Neiuwland, R., Boing, A. N., Romijn, F. P., Hack, C. E., and Sturk, A. (2001) Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation, Thromb Haemost 85, 639–646.

    PubMed  CAS  Google Scholar 

  2. Wolf, P. (1967) The nature and significance of platelet products in human plasma, Br J Haematol 13, 269–288.

    Article  PubMed  CAS  Google Scholar 

  3. Hughes, M., Hayward, C. P., Warkentin, T. E., Horsewood, P., Chorneyko, K. A., and Kelton, J. G. (2000) Morphological analysis of microparticle generation in heparin-induced thrombocytopenia, Blood 96, 188–194.

    PubMed  CAS  Google Scholar 

  4. Shet, A. S., Aras, O., Gupta, K., Hass, M. J., Rausch, D. J., Saba, N., Koopmeiners, L., Key, N. S., and Hebbel, R. P. (2003) Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes, Blood 102, 2678–2683.

    Article  PubMed  CAS  Google Scholar 

  5. Daniel, L., Fakhouri, F., Joly, D., Mouthon, L., Nusbaum, P., Grunfeld, J. P., Schifferli, J., Guillevin, L., Lesavre, P., and Halbwachs-Mecarelli, L. (2006) Increase of circulating neutrophil and platelet microparticles during acute vasculitis and hemodialysis, Kidney Int 69, 1416–1423.

    PubMed  CAS  Google Scholar 

  6. Pereira, J., Alfaro, G., Goycoolea, M., Quiroga, T., Ocqueteau, M., Massardo, L., Perez, C., Saez, C., Panes, O., Matus, V., and Mezzano, D. (2006) Circulating platelet-derived microparticles in systemic lupus erythematosus. Association with increased thrombin generation and procoagulant state, Thromb Haemost 95, 94–99.

    PubMed  CAS  Google Scholar 

  7. Pamuk, G. E., Vural, O., Turgut, B., Demir, M., Umit, H., and Tezel, A. (2006) Increased circulating platelet-neutrophil, platelet-monocyte complexes, and platelet activation in patients with ulcerative colitis: a comparative study, Am J Hematol 81, 753–759.

    Article  PubMed  CAS  Google Scholar 

  8. van der Zee, P. M., Biro, E., Ko, Y., de Winter, R. J., Hack, C. E., Sturk, A., and Nieuwland, R. (2006) P-selectin- and CD63-exposing platelet microparticles reflect platelet activation in peripheral arterial disease and myocardial infarction, Clin Chem 52, 657–664.

    Article  PubMed  Google Scholar 

  9. Biro, E., Nieuwland, R., and Sturk, A. (2004) Measuring circulating cell-derived microparticles, J Thromb Haemost 2, 1843–1844.

    Article  Google Scholar 

  10. Jy, W., Horstman, L. L., Jimenez, J. J., Ahn, Y. S., Biro, E., Nieuwland, R., Sturk, A., Dignat-George, F., Sabatier, F., Camoin-Jau, L., Sampol, J., Hugel, B., Zobairi, F., Freyssinet, J. M., Nomura, S., Shet, A. S., Key, N. S., and Hebbel, R. P. (2004) Measuring circulating cell-derived microparticles, J Thromb Haemost 2, 1842–1851.

    Article  PubMed  CAS  Google Scholar 

  11. Heijnen, H. F., Schiel, A. E., Fijnheer, R., Geuze, H. J., and Sixma, J. J. (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules, Blood 94, 3791–3799.

    PubMed  CAS  Google Scholar 

  12. Takano, K., Asazuma, N., Satoh, K., Yatomi, Y., and Ozaki, Y. (2004) Collagen-induced generation of platelet-derived microparticles in whole blood is dependent on ADP released from red blood cells and calcium ions, Platelets 15, 223–229.

    Article  PubMed  CAS  Google Scholar 

  13. Tans, G., Rosing, J., Thomassen, M. C., Heeb, M. J., Zwaal, R. F., and Griffin, J. H. (1991) Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles, Blood 77, 2641–2648.

    PubMed  CAS  Google Scholar 

  14. Siljander, P., Carpen, O., and Lassila, R. (1996) Platelet-derived microparticles associate with fibrin during thrombosis, Blood 87, 4651–4663.

    PubMed  CAS  Google Scholar 

  15. Holme, P. A., Orvim, U., Hamers, M. J., Solum, N. O., Brosstad, F. R., Barstad, R. M., and Sakariassen, K. S. (1997) Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis, Arterioscler Thromb Vasc Biol 17, 646–653.

    Article  PubMed  CAS  Google Scholar 

  16. Miyazaki, Y., Nomura, S., Miyake, T., Kagawa, H., Kitada, C., Taniguchi, H., Komiyama, Y., Fujimura, Y., Ikeda, Y., and Fukuhara, S. (1996) High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles, Blood 88, 3456–3464.

    PubMed  CAS  Google Scholar 

  17. Nardi, M. A., Gor, Y., Feinmark, S. J., Xu, F., and Karpatkin, S. (2007) Platelet particle formation by anti GPIIIa49-66 Ab, Ca2+ ionophore A23187, and phorbol myristate acetate is induced by reactive oxygen species and inhibited by dexamethasone blockade of platelet phospholipase A2, 12-lipoxygenase, and NADPH oxidase, Blood 110, 1989–1996.

    Article  PubMed  CAS  Google Scholar 

  18. Sims, P. J., Faioni, E. M., Wiedmer, T., and Shattil, S. J. (1988) Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity, J Biol Chem 263, 18205–18212.

    PubMed  CAS  Google Scholar 

  19. Prasad, K. S., Andre, P., He, M., Bao, M., Manganello, J., and Phillips, D. R. (2003) Soluble CD40 ligand induces beta3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling, Proc Natl Acad Sci USA 100, 12367–12371.

    Article  PubMed  CAS  Google Scholar 

  20. Flaumenhaft, R., Dilks, J. R., Richardson, J., Alden, E., Patel-Hett, S. R., Battinelli, E., Klement, G. L., Sola-Visner, M., and Italiano, J. E., Jr. (2009) Megakaryocyte-derived microparticles: direct visualization and distinction from platelet-derived microparticles, Blood 113, 1112–1121.

    Article  PubMed  CAS  Google Scholar 

  21. Zwaal, R. F., Comfurius, P., and Bevers, E. M. (2005) Surface exposure of phosphatidylserine in pathological cells, Cell Mol Life Sci 62, 971–988.

    Article  PubMed  CAS  Google Scholar 

  22. Wiedmer, T., Zhao, J., Li, L., Zhou, Q., Hevener, A., Olefsky, J. M., Curtiss, L. K., and Sims, P. J. (2004) Adiposity, dyslipidemia, and insulin resistance in mice with targeted deletion of phospholipid scramblase 3 (PLSCR3), Proc Natl Acad Sci USA 101, 13296–13301.

    Article  PubMed  CAS  Google Scholar 

  23. Zhou, Q., Zhao, J., Wiedmer, T., and Sims, P. J. (2002) Normal hemostasis but defective hematopoietic response to growth factors in mice deficient in phospholipid scramblase 1, Blood 99, 4030–4038.

    Article  PubMed  CAS  Google Scholar 

  24. Razmara, M., Hu, H., Masquelier, M., and Li, N. (2007) Glycoprotein IIb/IIIa blockade inhibits platelet aminophospholipid exposure by potentiating translocase and attenuating scramblase activity, Cell Mol Life Sci 64, 999–1008.

    Article  PubMed  CAS  Google Scholar 

  25. Connor, D. E., Exner, T., Ma, D. D., and Joseph, J. E. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib, Thromb Haemost 103, 1044–1052.

    Google Scholar 

  26. Shcherbina, A., and Remold-O’Donnell, E. (1999) Role of caspase in a subset of human platelet activation responses, Blood 93, 4222–4231.

    PubMed  CAS  Google Scholar 

  27. Fox, J. E., Austin, C. D., Reynolds, C. C., and Steffen, P. K. (1991) Evidence that agonist-induced activation of calpain causes the shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets, J Biol Chem 266, 13289–13295.

    PubMed  CAS  Google Scholar 

  28. Shapiro, H. M. (2003) Practical Flow Cytometry, 4th ed., Wiley-Liss, New York.

    Book  Google Scholar 

  29. Lacroix, R., Robert, S., Poncelet, P., and Dignat-George, F. (2010) Overcoming limitations of microparticle measurement by flow cytometry, Semin Thromb Hemost 36, 807–818.

    Article  PubMed  Google Scholar 

  30. Yuana, Y., Oosterkamp, T. H., Bahatyrova, S., Ashcroft, B., Garcia Rodriguez, P., Bertina, R. M., and Osanto, S. (2010) Atomic force microscopy: a novel approach to the detection of nanosized blood microparticles, J Thromb Haemost 8, 315–323.

    Article  PubMed  CAS  Google Scholar 

  31. Lawrie, A. S., Albanyan, A., Cardigan, R. A., Mackie, I. J., and Harrison, P. (2009) Microparticle sizing by dynamic light scattering in fresh-frozen plasma, Vox Sang 96, 206–212.

    Article  PubMed  CAS  Google Scholar 

  32. Nomura, S., Inami, N., Shouzu, A., Omoto, S., Kimura, Y., Takahashi, N., Tanaka, A., Urase, F., Maeda, Y., Ohtani, H., and Iwasaka, T. (2009) The effects of pitavastatin, eicosapentaenoic acid and combined therapy on platelet-derived microparticles and adiponectin in hyperlipidemic, diabetic patients, Platelets 20, 16–22.

    Article  PubMed  CAS  Google Scholar 

  33. Zwicker, J. I., Liebman, H. A., Neuberg, D., Lacroix, R., Bauer, K. A., Furie, B. C., and Furie, B. (2009) Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy, Clin Cancer Res 15, 6830–6840.

    Article  PubMed  CAS  Google Scholar 

  34. DeBlois, R. W., and Wesley, R. K. (1977) Sizes and concentrations of several type C Oncorna­viruses and Bacteriophage T2 by the resistive-pulse technique, J Virol 23, 227–233.

    PubMed  CAS  Google Scholar 

  35. Feuer, B. I., Uzgiris, E. E., Deblois, R. W., Cluxton, D. H., and Lenard, J. (1978) Length of glycoprotein spikes of vesicular stomatitis virus and Sindbis virus, measured in situ using quasi elastic light scattering and a resistive-pulse technique, Virology 90, 156–161.

    Article  PubMed  CAS  Google Scholar 

  36. Enjeti, A. K., Lincz, L. F., and Seldon, M. (2007) Detection and measurement of microparticles: an evolving research tool for vascular biology, Semin Thromb Hemost 33, 771–779.

    Article  PubMed  CAS  Google Scholar 

  37. Perez-Pujol, S., Marker, P. H., and Key, N. S. (2007) Platelet microparticles are heterogeneous and highly dependent on the activation mechanism: studies using a new digital flow cytometer, Cytometry A 71, 38–45.

    PubMed  Google Scholar 

  38. Kim, H. K., Song, K. S., Lee, E. S., Lee, Y. J., Park, Y. S., Lee, K. R., and Lee, S. N. (2002) Optimized flow cytometric assay for the measurement of platelet microparticles in plasma: pre-analytic and analytic considerations, Blood Coagul Fibrinolysis 13, 393–397.

    Article  PubMed  CAS  Google Scholar 

  39. Robert, S., Poncelet, P., Lacroix, R., Arnaud, L., Giraudo, L., Hauchard, A., Sampol, J., and Dignat-George, F. (2009) Standardization of platelet-derived microparticle counting using calibrated beads and a Cytomics FC500 routine flow cytometer: a first step towards multicenter studies?, J Thromb Haemost 7, 190–197.

    Article  PubMed  CAS  Google Scholar 

  40. Nebe-von-Caron, G. (2009) Standardization in microbial cytometry, Cytometry A 75, 86–89.

    PubMed  Google Scholar 

  41. Michelsen, A. E., Wergeland, R., Stokke, O., and Brosstad, F. (2006) Development of a time-resolved immunofluorometric assay for quantifying platelet-derived microparticles in human plasma, Thromb Res 117, 705–711.

    Article  PubMed  CAS  Google Scholar 

  42. Mallat, Z., Benamer, H., Hugel, B., Benessiano, J., Steg, P. G., Freyssinet, J. M., and Tedgui, A. (2000) Elevated levels of shed membrane microparticles with procoagulant potential in the peripheral circulating blood of patients with acute coronary syndromes, Circulation 101, 841–843.

    PubMed  CAS  Google Scholar 

  43. Hugel, B., Socie, G., Vu, T., Toti, F., Gluckman, E., Freyssinet, J. M., and Scrobohaci, M. L. (1999) Elevated levels of circulating procoagulant microparticles in patients with paroxysmal nocturnal hemoglobinuria and aplastic anemia, Blood 93, 3451–3456.

    PubMed  CAS  Google Scholar 

  44. Piccin, A., Murphy, W. G., and Smith, O. P. (2007) Circulating microparticles: pathophysiology and clinical implications, Blood Rev 21, 157–171.

    Article  PubMed  CAS  Google Scholar 

  45. Mody, M., Lazarus, A. H., Semple, J. W., and Freedman, J. (1999) Preanalytical requirements for flow cytometric evaluation of platelet activation: choice of anticoagulant, Transfus Med 9, 147–154.

    Article  PubMed  CAS  Google Scholar 

  46. Bode, A. P., Orton, S. M., Frye, M. J., and Udis, B. J. (1991) Vesiculation of platelets during in vitro aging, Blood 77, 887–895.

    PubMed  CAS  Google Scholar 

  47. Pearson, L., Thom, J., Adams, M., Oostryck, R., Krueger, R., Yong, G., and Baker, R. (2009) A rapid flow cytometric technique for the detection of platelet-monocyte complexes, activated platelets and platelet-derived microparticles, Int J Lab Hematol 31, 430–439.

    Article  PubMed  Google Scholar 

  48. Ma, Y., and Wong, K. (2007) Reassociation and translocation of glycoprotein IIB-IIIA in EDTA-treated human platelets, Platelets 18, 451–459.

    Article  PubMed  CAS  Google Scholar 

  49. Nomura, S., Suzuki, M., Kido, H., Yamaguchi, K., Fukuroi, T., Yanabu, M., Soga, T., Nagata, H., Kokawa, T., and Yasunaga, K. (1992) Differences between platelet and microparticle glycoprotein IIb/IIIa, Cytometry 13, 621–629.

    Article  PubMed  CAS  Google Scholar 

  50. Dignat-George, F. (2010) Standardization and pre-analytical variables, in Micro & Nanovesicles in Health and Disease, Oxford, England.

    Google Scholar 

  51. Keuren, J. F., Magdeleyns, E. J., Govers-Riemslag, J. W., Lindhout, T., and Curvers, J. (2006) Effects of storage-induced platelet microparticles on the initiation and propagation phase of blood coagulation, Br J Haematol 134, 307–313.

    Article  PubMed  CAS  Google Scholar 

  52. Dignat-George, F., Sabatier, F., Camoin, L., and Sampol, J. (2004) Numeration of circulating microparticles of various cellular origin by flow cytometry, J Thromb Haemost 2, 1844–1845.

    Article  Google Scholar 

  53. Simak, J., and Gelderman, M. P. (2006) Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers, Transfus Med Rev 20, 1–26.

    Article  PubMed  Google Scholar 

  54. Trummer, A., De Rop, C., Tiede, A., Ganser, A., and Eisert, R. (2009) Recovery and composition of microparticles after snap-freezing depends on thawing temperature, Blood Coagul Fibrinolysis 20, 52–56.

    Article  PubMed  Google Scholar 

  55. Ahmad, S., Amirkhosravi, A., Langer, F., Desai, H., Amaya, M., and Francis, J. L. (2005) Importance of pre-analytical variables in the measurement of platelet derived microparticles, J Thromb Haemost 3, OR372.

    Google Scholar 

Download references

Acknowledgment

We thank S. Robert for his input on forward scatter-based flow cytometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey I. Zwicker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zwicker, J.I., Lacroix, R., Dignat-George, F., Furie, B.C., Furie, B. (2012). Measurement of Platelet Microparticles. In: Gibbins, J., Mahaut-Smith, M. (eds) Platelets and Megakaryocytes. Methods in Molecular Biology, vol 788. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-307-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-307-3_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-306-6

  • Online ISBN: 978-1-61779-307-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics