Skip to main content

Assessments of Visual Function

  • Protocol
  • First Online:
Book cover Animal Models of Movement Disorders

Part of the book series: Neuromethods ((NM,volume 62))

  • 897 Accesses

Abstract

The visual system is the part of the central nervous system that detects light. It is sub-served by the ­photoreceptor detectors within the eye, and this information allows creatures to build a representation of the visual world as well as regulating a whole range of subconscious physiological processes. Here we describe seven techniques to probe the functionality of the visual system in rodents. They encompass direct electrical recordings and functional anatomy, as well as reflexes and behavioural response outputs of light detection. Used in concert, these techniques can enable the assessment of which photoreceptor classes are functioning as well as to indicate whether light information is processed at a sub-cortical and/or cortical level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lall GS, Revell VL, Momiji H, Al Enezi J, Altimus CM, et al. (2010) Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance. Neuron 66: 417–428.

    PubMed  CAS  Google Scholar 

  2. Bridges CDB (1959) Visual pigments of some common laboratory animals. Nature 184: 1727–1728.

    PubMed  Google Scholar 

  3. Sun H, Macke JP, Nathans J (1997) Mechanisms of spectral tuning in the mouse green cone pigment. Proc Natl Acad Sci U S A 94: 8860–8865.

    PubMed  CAS  Google Scholar 

  4. Radlwimmer FB, Yokoyama S (1998) Genetic analyses of the green visual pigments of rabbit (Oryctolagus cuniculus) and rat (Rattus norvegicus). Gene 218: 103–109.

    PubMed  CAS  Google Scholar 

  5. Jacobs GH, Neitz J, Deegan JF, 2nd (1991) Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353: 655–656.

    PubMed  CAS  Google Scholar 

  6. Yokoyama S, Radlwimmer FB, Kawamura S (1998) Regeneration of ultraviolet pigments of vertebrates. FEBS Lett 423: 155–158.

    PubMed  CAS  Google Scholar 

  7. Lucas RJ, Douglas RH, Foster RG (2001) Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 4: 621–626.

    PubMed  CAS  Google Scholar 

  8. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295: 1070–1073.

    PubMed  CAS  Google Scholar 

  9. Prusky GT, Alam NM, Douglas RM (2006) Enhancement of vision by monocular deprivation in adult mice. J Neurosci 26: 11554–11561.

    PubMed  CAS  Google Scholar 

  10. Prusky GT, Silver BD, Tschetter WW, Alam NM, Douglas RM (2008) Experience-dependent plasticity from eye opening enables lasting, visual cortex-dependent enhancement of motion vision. J Neurosci 28: 9817–9827.

    PubMed  CAS  Google Scholar 

  11. Masu M, Iwakabe H, Tagawa Y, Miyoshi T, Yamashita M, et al. (1995) Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80: 757–765.

    PubMed  CAS  Google Scholar 

  12. Green DG, Kapousta-Bruneau NV (1999) A dissection of the electroretinogram from the isolated rat retina with microelectrodes and drugs. Vis Neurosci 16: 727–741.

    PubMed  CAS  Google Scholar 

  13. Dong CJ, Hare WA (2002) GABAc feedback pathway modulates the amplitude and kinetics of ERG b-wave in a mammalian retina in vivo. Vision Res 42: 1081–1087.

    PubMed  CAS  Google Scholar 

  14. Hudnell HK, Boyes WK, Otto DA (1990) Rat and human visual-evoked potentials recorded under comparable conditions: a preliminary analysis to address the issue of predicting human neurotoxic effects from rat data. Neurotoxicol Teratol 12: 391–398.

    PubMed  CAS  Google Scholar 

  15. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412: 150–157.

    PubMed  CAS  Google Scholar 

  16. Hubel DH, Wiesel TN (1959) Receptive fields of single neurones in the cat’s striate cortex. J Physiol 148: 574–591.

    PubMed  CAS  Google Scholar 

  17. Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324: 361–364.

    PubMed  CAS  Google Scholar 

  18. Semo M, Gias C, Ahmado A, Sugano E, Allen AE, et al. (2010) Dissecting a role for melanopsin in behavioural light aversion reveals a response independent of conventional ­photoreception. PLoS One 5: e15009.

    PubMed  CAS  Google Scholar 

  19. Schuett S, Bonhoeffer T, Hubener M (2002) Mapping retinotopic structure in mouse visual cortex with optical imaging. J Neurosci 22: 6549–6559.

    PubMed  CAS  Google Scholar 

  20. Kalatsky VA, Stryker MP (2003) New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38: 529–545.

    PubMed  CAS  Google Scholar 

  21. Cang J, Kalatsky VA, Lowel S, Stryker MP (2005) Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse. Vis Neurosci 22: 685–691.

    PubMed  Google Scholar 

  22. Brown TM, Gias C, Hatori M, Keding SR, Semo M, et al. (2010) Melanopsin contributions to irradiance coding in the thalamo-­cortical visual system. PLoS Biol 8: e1000558.

    PubMed  Google Scholar 

  23. Stetter M, Schiessl I, Otto T, Sengpiel F, Hubener M, et al. (2000) Principal component analysis and blind separation of sources for optical imaging of intrinsic signals. Neuroimage 11: 482–490.

    PubMed  CAS  Google Scholar 

  24. Zheng Y, Johnston D, Berwick J, Mayhew J (2001) Signal source separation in the analysis of neural activity in brain. Neuroimage 13: 447–458.

    PubMed  CAS  Google Scholar 

  25. Marc RE (1999) Mapping glutamatergic drive in the vertebrate retina with a channel-­permeant organic cation. J Comp Neurol 407: 47–64.

    PubMed  CAS  Google Scholar 

  26. Marc RE, Kalloniatis M, Jones BW (2005) Excitation mapping with the organic cation AGB2+. Vision Res 45: 3454–3468.

    PubMed  CAS  Google Scholar 

  27. Vugler AA, Redgrave P, Hewson-Stoate NJ, Greenwood J, Coffey PJ (2007) Constant illumination causes spatially discrete dopamine depletion in the normal and degenerate retina. J Chem Neuroanat 33: 9–22.

    PubMed  CAS  Google Scholar 

  28. Sheng M, McFadden G, Greenberg ME (1990) Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4: 571–582.

    PubMed  CAS  Google Scholar 

  29. Rohrer B, Iuvone PM, Stell WK (1995) Stimulation of dopaminergic amacrine cells by stroboscopic illumination or fibroblast growth factor (bFGF, FGF-2) injections: possible roles in prevention of form-deprivation myopia in the chick. Brain Res 686: 169–181.

    PubMed  CAS  Google Scholar 

  30. Cameron MA, Pozdeyev N, Vugler AA, Cooper H, Iuvone PM, et al. (2009) Light regulation of retinal dopamine that is independent of melanopsin phototransduction. Eur J Neurosci 29: 761–767.

    PubMed  CAS  Google Scholar 

  31. Hanzlicek BW, Peachey NS, Grimm C, Hagstrom SA, Ball SL (2004) Probing inner retinal circuits in the rod pathway: a comparison of c-fos activation in mutant mice. Vis Neurosci 21: 873–881.

    PubMed  Google Scholar 

  32. Koistinaho J, Sagar SM (1995) Light-induced c-fos expression in amacrine cells in the rabbit retina. Brain Res Mol Brain Res 29: 53–63.

    PubMed  CAS  Google Scholar 

  33. Zhang DQ, Wong KY, Sollars PJ, Berson DM, Pickard GE, et al. (2008) Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proc Natl Acad Sci U S A 105: 14181–14186.

    PubMed  CAS  Google Scholar 

  34. Hannibal J, Fahrenkrug J (2004) Melanopsin containing retinal ganglion cells are light responsive from birth. Neuroreport 15: 2317–2320.

    PubMed  CAS  Google Scholar 

  35. Pickard GE, Baver SB, Ogilvie MD, Sollars PJ (2009) Light-induced fos expression in intrinsically photosensitive retinal ganglion cells in melanopsin knockout (opn4) mice. PLoS ONE 4: e4984.

    PubMed  Google Scholar 

  36. Semo M, Lupi D, Peirson SN, Butler JN, Foster RG (2003) Light-induced c-fos in melanopsin retinal ganglion cells of young and aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 18: 3007–3017.

    PubMed  Google Scholar 

  37. Greferath U, Goh HC, Chua PY, Astrand E, O’Brien EE, et al. (2009) Mapping retinal degeneration and loss-of-function in Rd-FTL mice. Invest Ophthalmol Vis Sci 50: 5955–5964.

    PubMed  Google Scholar 

  38. Carr AJ, Vugler AA, Hikita ST, Lawrence JM, Gias C, et al. (2009) Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. PLoS One 4: e8152.

    PubMed  Google Scholar 

  39. Meijer JH, Rietveld WJ (1989) Neuro­physiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev 69: 671–707.

    PubMed  CAS  Google Scholar 

  40. Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247: 975–978.

    PubMed  CAS  Google Scholar 

  41. Meijer JH, Rusak B, Ganshirt G (1992) The relation between light-induced discharge in the suprachiasmatic nucleus and phase shifts of hamster circadian rhythms. Brain Res 598: 257–263.

    PubMed  CAS  Google Scholar 

  42. Aronin N, Sagar SM, Sharp FR, Schwartz WJ (1990) Light regulates expression of a Fos-related protein in rat suprachiasmatic nuclei. Proc Natl Acad Sci U S A 87: 5959–5962.

    PubMed  CAS  Google Scholar 

  43. Schwartz WJ, Carpino A, Jr., de la Iglesia HO, Baler R, Klein DC, et al. (2000) Differential regulation of fos family genes in the ventrolateral and dorsomedial subdivisions of the rat suprachiasmatic nucleus. Neuroscience 98: 535–547.

    PubMed  CAS  Google Scholar 

  44. Beaule C, Amir S (2003) The eyes suppress a circadian rhythm of FOS expression in the suprachiasmatic nucleus in the absence of light. Neuroscience 121: 253–257.

    PubMed  CAS  Google Scholar 

  45. Chambille I, Doyle S, Serviere J (1993) Photic induction and circadian expression of Fos-like protein. Immunohistochemical study in the retina and suprachiasmatic nuclei of hamster. Brain Res 612: 138–150.

    CAS  Google Scholar 

  46. Sumova A, Travnickova Z, Mikkelsen JD, Illnerova H (1998) Spontaneous rhythm in c-Fos immunoreactivity in the dorsomedial part of the rat suprachiasmatic nucleus. Brain Res 801: 254–258.

    PubMed  CAS  Google Scholar 

  47. Colwell CS, Foster RG (1992) Photic regulation of Fos-like immunoreactivity in the suprachiasmatic nucleus of the mouse. J Comp Neurol 324: 135–142.

    PubMed  CAS  Google Scholar 

  48. Edelstein K, Beaule C, D’Abramo R, Amir S (2000) Expression profiles of JunB and c-Fos proteins in the rat circadian system. Brain Res 870: 54–65.

    PubMed  CAS  Google Scholar 

  49. Kornhauser JM, Nelson DE, Mayo KE, Takahashi JS (1990) Photic and circadian ­regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron 5: 127–134.

    PubMed  CAS  Google Scholar 

  50. Rusak B, Robertson HA, Wisden W, Hunt SP (1990) Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 248: 1237–1240.

    PubMed  CAS  Google Scholar 

  51. Dkhissi-Benyahya O, Sicard B, Cooper HM (2000) Effects of irradiance and stimulus duration on early gene expression (Fos) in the suprachiasmatic nucleus: temporal summation and reciprocity. J Neurosci 20: 7790–7797.

    PubMed  CAS  Google Scholar 

  52. Baver SB, Pickard GE, Sollars PJ, Pickard GE (2008) Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci 27: 1763–1770.

    PubMed  Google Scholar 

  53. Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK, et al. (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67: 49–60.

    PubMed  CAS  Google Scholar 

  54. Gooley JJ, Lu J, Chou TC, Scammell TE, Saper CB (2001) Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci 4: 1165.

    PubMed  CAS  Google Scholar 

  55. Hannibal J, Hindersson P, Knudsen SM, Georg B, Fahrenkrug J (2002) The photopigment melanopsin is exclusively present in ­pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J Neurosci 22: RC191.

    Google Scholar 

  56. Hattar S, Kumar M, Park A, Tong P, Tung J, et al. (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497: 326–349.

    PubMed  Google Scholar 

  57. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295: 1065–1070.

    PubMed  CAS  Google Scholar 

  58. Foster RG, Argamaso S, Coleman S, Colwell CS, Lederman A, et al. (1993) Photoreceptors regulating circadian behavior: a mouse model. J Biol Rhythms 8: S17-23.

    PubMed  Google Scholar 

  59. Lupi D, Cooper HM, Froehlich A, Standford L, McCall MA, et al. (1999) Transgenic ablation of rod photoreceptors alters the circadian phenotype of mice. Neuroscience 89: 363–374.

    PubMed  CAS  Google Scholar 

  60. Masana MI, Benloucif S, Dubocovich ML (1996) Light-induced c-fos mRNA expression in the suprachiasmatic nucleus and the retina of C3H/HeN mice. Brain Res Mol Brain Res 42: 193–201.

    PubMed  CAS  Google Scholar 

  61. Barnard AR, Appleford JM, Sekaran S, Chinthapalli K, Jenkins A, et al. (2004) Residual photosensitivity in mice lacking both rod opsin and cone photoreceptor cyclic nucleotide gated channel 3 alpha subunit. Vis Neurosci 21: 675–683.

    PubMed  Google Scholar 

  62. Lupi D, Semo M, Foster RG (2010) Impact of age and retinal degeneration on the light input to circadian brain structures. Neurobiol Aging.

    Google Scholar 

  63. Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, et al. (2002) Role of Melanopsin in Circadian Responses to Light. Science 298: 2211–2213.

    PubMed  CAS  Google Scholar 

  64. Lu B, Coffey P, Wang S, Ferrari R, Lund R (2004) Abnormal c-fos-like immunoreactivity in the superior colliculus and other subcortical visual centers of pigmented royal college of surgeons rats. J Comp Neurol 472: 100–112.

    PubMed  Google Scholar 

  65. Beaule C, Amir S (1999) Photic entrainment and induction of immediate-early genes within the rat circadian system. Brain Res 821: 95–100.

    PubMed  CAS  Google Scholar 

  66. Park HT, Baek SY, Kim BS, Kim JB, Kim JJ (1993) Profile of Fos-like immunoreactivity induction by light stimuli in the intergeniculate leaflet is different from that of the suprachiasmatic nucleus. Brain Res 610: 334–339.

    PubMed  CAS  Google Scholar 

  67. Peters RV, Aronin N, Schwartz WJ (1996) c-Fos expression in the rat intergeniculate leaflet: photic regulation, co-localization with Fos-B, and cellular identification. Brain Res 728: 231–241.

    PubMed  CAS  Google Scholar 

  68. Lupi D, Oster H, Thompson S, Foster RG (2008) The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat Neurosci 11: 1068–1073.

    PubMed  CAS  Google Scholar 

  69. Craner SL, Hoffman GE, Lund JS, Humphrey AL, Lund RD (1992) cFos labeling in rat superior colliculus: activation by normal retinal pathways and pathways from intracranial retinal transplants. Exp Neurol 117: 219–229.

    PubMed  CAS  Google Scholar 

  70. Prichard JR, Stoffel RT, Quimby DL, Obermeyer WH, Benca RM, et al. (2002) Fos immunoreactivity in rat subcortical visual shell in response to illuminance changes. Neuroscience 114: 781–793.

    PubMed  CAS  Google Scholar 

  71. Hannibal J, Fahrenkrug J (2004) Target areas innervated by PACAP-immunoreactive retinal ganglion cells. Cell Tissue Res 316: 99–113.

    PubMed  CAS  Google Scholar 

  72. Van der Gucht E, Hof PR, Van Brussel L, Burnat K, Arckens L (2007) Neurofilament protein and neuronal activity markers define regional architectonic parcellation in the mouse visual cortex. Cereb Cortex 17: 2805–2819.

    PubMed  Google Scholar 

  73. Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14: 421–451.

    PubMed  CAS  Google Scholar 

  74. Rieux C, Carney R, Lupi D, Dkhissi-Benyahya O, Jansen K, et al. (2002) Analysis of immunohistochemical label of Fos protein in the suprachiasmatic nucleus: comparison of different methods of quantification. J Biol Rhythms 17: 121–136.

    PubMed  CAS  Google Scholar 

  75. Preston GA, Lyon TT, Yin Y, Lang JE, Solomon G, et al. (1996) Induction of apoptosis by c-Fos protein. Mol Cell Biol 16: 211–218.

    PubMed  CAS  Google Scholar 

  76. Rich KA, Zhan Y, Blanks JC (1997) Aberrant expression of c-Fos accompanies photoreceptor cell death in the rd mouse. J Neurobiol 32: 593–612.

    PubMed  CAS  Google Scholar 

  77. Zhan Y, Rich KA (1997) Precocious induction of CREB in photoreceptors of the rd mouse precedes aberrant c-Fos expression and apoptosis. Invest Ophthalmol Vis Sci 38: 153–153.

    Google Scholar 

  78. Schreiber SS, Tocco G, Shors TJ, Thompson RF (1991) Activation of immediate early genes after acute stress. Neuroreport 2: 17–20.

    PubMed  CAS  Google Scholar 

  79. Dragunow M, Robertson HA (1988) Brain injury induces c-fos protein(s) in nerve and glial-like cells in adult mammalian brain. Brain Res 455: 295–299.

    PubMed  CAS  Google Scholar 

  80. Johnson RF, Moore RY, Morin LP (1988) Loss of entrainment and anatomical plasticity after lesions of the hamster retinohypothalamic tract. Brain Res 460: 297–313.

    PubMed  CAS  Google Scholar 

  81. Benloucif S, Dubocovich ML (1996) Melatonin and light induce phase shifts of circadian activity rhythms in the C3H/HeN mouse. J Biol Rhythms 11: 113–125.

    PubMed  CAS  Google Scholar 

  82. Nelson DE, Takahashi JS (1991) Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus). J Physiol 439: 115–145.

    PubMed  CAS  Google Scholar 

  83. Hatori M, Le H, Vollmers C, Keding SR, Tanaka N, et al. (2008) Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS ONE 3: e2451.

    PubMed  Google Scholar 

  84. Güler AD, Ecker JL, Lall GS, Haq S, Altimus CM, et al. (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453: 102–105.

    PubMed  Google Scholar 

  85. Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M, et al. (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284: 502–504.

    PubMed  CAS  Google Scholar 

  86. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, et al. (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424: 75–81.

    Google Scholar 

  87. Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG (1999) Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284: 505–507.

    PubMed  CAS  Google Scholar 

  88. Altimus CM, Guler AD, Alam NM, Arman AC, Prusky GT, et al. (2010) Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat Neurosci 13: 1107–1112.

    PubMed  CAS  Google Scholar 

  89. Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, et al. (2002) Melanopsin (Opn4) Requirement for Normal Light-Induced Circadian Phase Shifting. Science 298: 2213–2216.

    PubMed  CAS  Google Scholar 

  90. Yoshimura T, Ebihara S (1996) Spectral sensitivity of photoreceptors mediating phase-shifts of circadian rhythms in retinally degenerate CBA/J (rd/rd) and normal CBA/N (+/+)mice. J Comp Physiol (A) 178: 797–802.

    CAS  Google Scholar 

  91. Mrosovsky N (2003) Contribution of classic photoreceptors to entrainment. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189: 69–73.

    PubMed  CAS  Google Scholar 

  92. Dkhissi-Benyahya O, Gronfier C, De Vanssay W, Flamant F, Cooper HM (2007) Modeling the role of mid-wavelength cones in circadian responses to light. Neuron 53: 677–687.

    PubMed  CAS  Google Scholar 

  93. Provencio I, Foster RG (1995) Circadian rhythms in mice can be regulated by photoreceptors with cone- like characteristics. Brain Res 694: 183–190.

    PubMed  CAS  Google Scholar 

  94. Foster RG, Provencio I, Hudson D, Fiske S, De Grip W, et al. (1991) Circadian photoreception in the retinally degenerate mouse (rd/rd). J Comp Physiol (A) 169: 39–50.

    CAS  Google Scholar 

  95. Semo M, Peirson S, Lupi D, Lucas RJ, Jeffery G, et al. (2003) Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci 17: 1793–1801.

    PubMed  Google Scholar 

  96. Mrosovsky N, Foster RG, Salmon PA (1999) Thresholds for masking responses to light in three strains of retinally degenerate mice. J Comp Physiol (A) 184: 423–428.

    CAS  Google Scholar 

  97. Thompson S, Foster RG, Stone EM, Sheffield VC, Mrosovsky N (2008) Classical and melanopsin photoreception in irradiance detection: negative masking of locomotor activity by light. Eur J Neurosci 27: 1973–1979.

    PubMed  Google Scholar 

  98. Mrosovsky N, Hattar S (2003) Impaired masking responses to light in melanopsin-knockout mice. Chronobiol Int 20: 989–999.

    PubMed  CAS  Google Scholar 

  99. Edelstein K, Mrosovsky N (2001) Behavioral responses to light in mice with dorsal lateral geniculate lesions. Brain Res 918: 107–112.

    PubMed  CAS  Google Scholar 

  100. Goz D, Studholme K, Lappi DA, Rollag MD, Provencio I, et al. (2008) Targeted destruction of photosensitive retinal ganglion cells with a saporin conjugate alters the effects of light on mouse circadian rhythms. PLoS ONE 3: e3153.

    PubMed  Google Scholar 

  101. Mrosovsky N, Lucas RJ, Foster RG (2001) Persistence of masking responses to light in mice lacking rods and cones. J Biol Rhythms 16: 585–588.

    PubMed  CAS  Google Scholar 

  102. Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, et al. (2003) Melanopsin is required for non-image-forming photic responses in blind mice. Science 301: 525–527.

    PubMed  CAS  Google Scholar 

  103. Foster RG, Helfrich-Förster C (2001) The regulation of circadian clocks by light in fruitflies and mice. Phil Trans R Soc Lond B 356: 1779–1789.

    CAS  Google Scholar 

  104. Whiteley SJ, Young MJ, Litchfield TM, Coffey PJ, Lund RD (1998) Changes in the pupillary light reflex of pigmented royal college of surgeons rats with Age. Exp Eye Res 66: 719–730.

    PubMed  CAS  Google Scholar 

  105. Lin B, Koizumi A, Tanaka N, Panda S, Masland RH (2008) Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci U S A.

    Google Scholar 

  106. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, et al. (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299: 245–247.

    PubMed  CAS  Google Scholar 

  107. Clarke RJ, Ikeda H (1985) Luminance and darkness detectors in the olivary and posterior pretectal nuclei and their relationship to the pupillary light reflex in the rat. I. Studies with steady luminance levels. Exp Brain Res 57: 224–232.

    CAS  Google Scholar 

  108. Trejo LJ, Cicerone CM (1984) Cells in the pretectal olivary nucleus are in the pathway for the direct light reflex of the pupil in the rat. Brain Res 300: 49–62.

    PubMed  CAS  Google Scholar 

  109. Young MJ, Lund RD (1994) The anatomical substrates subserving the pupillary light reflex in rats: origin of the consensual pupillary response. Neuroscience 62: 481–496.

    PubMed  CAS  Google Scholar 

  110. Bito LZ, Turansky DG (1975) Photoactivation of pupillary constriction in the isolated in vitro iris of a mammal (Mesocricetus auratus). Comp Biochem Physiol A 50: 407–413.

    PubMed  CAS  Google Scholar 

  111. Lau KC, So KF, Campbell G, Lieberman AR (1992) Pupillary constriction in response to light in rodents, which does not depend on central neural pathways. J Neurol Sci 113: 70–79.

    PubMed  CAS  Google Scholar 

  112. Prusky GT, Alam NM, Beekman S, Douglas RM (2004) Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci 45: 4611–4616.

    PubMed  Google Scholar 

  113. Umino Y, Solessio E, Barlow RB (2008) Speed, spatial, and temporal tuning of rod and cone vision in mouse. J Neurosci 28: 189–198.

    PubMed  CAS  Google Scholar 

  114. Biral GP, Cavazzuti M, Ferrari R, Corazza R (1982) Optokinetic visual detection in the rat visual centres. A (14C)-2-deoxy-D-glucose study. Arch Int Physiol Biochim 90: 141–144.

    PubMed  CAS  Google Scholar 

  115. Douglas RM, Alam NM, Silver BD, McGill TJ, Tschetter WW, et al. (2005) Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system. Vis Neurosci 22: 677–684.

    PubMed  CAS  Google Scholar 

  116. Prusky GT, Douglas RM (2004) Characteri­zation of mouse cortical spatial vision. Vision Res 44: 3411–3418.

    PubMed  CAS  Google Scholar 

  117. Prusky GT, West PW, Douglas RM (2000) Experience-dependent plasticity of visual acuity in rats. Eur J Neurosci 12: 3781–3786.

    PubMed  CAS  Google Scholar 

  118. Thaung C, Arnold K, Jackson IJ, Coffey PJ (2002) Presence of visual head tracking differentiates normal sighted from retinal degenerate mice. Neurosci Lett 325: 21–24.

    PubMed  CAS  Google Scholar 

  119. Schmucker C, Seeliger M, Humphries P, Biel M, Schaeffel F (2005) Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function. Invest Ophthalmol Vis Sci 46: 398–407.

    PubMed  Google Scholar 

  120. Tomita H, Sugano E, Isago H, Hiroi T, Wang Z, et al. (2010) Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp Eye Res 90: 429–436.

    PubMed  CAS  Google Scholar 

  121. Lagali PS, Balya D, Awatramani GB, Munch TA, Kim DS, et al. (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11: 667–675.

    PubMed  CAS  Google Scholar 

  122. Lund RD, Adamson P, Sauvé Y, Keegan DJ, Girman SV, et al. (2001) Subretinal transplantation of genetically modified human cell lines attenuates loss of visual function in dystrophic rats. Proc Natl Acad Sci U S A 98: 9942–9947.

    PubMed  CAS  Google Scholar 

  123. van Alphen B, Winkelman BH, Frens MA (2009) Age- and sex-related differences in contrast sensitivity in C57BL/6 mice. Invest Ophthalmol Vis Sci 50: 2451–2458.

    PubMed  Google Scholar 

  124. Abdeljalil J, Hamid M, Abdel-Mouttalib O, Stephane R, Raymond R, et al. (2005) The optomotor response: a robust first-line visual screening method for mice. Vision Res 45: 1439–1446.

    PubMed  Google Scholar 

  125. Green CB, Besharse JC (2004) Retinal circadian clocks and control of retinal physiology. J Biol Rhythms 19: 91–102.

    PubMed  CAS  Google Scholar 

  126. Jekely G (2009) Evolution of phototaxis. Philos Trans R Soc Lond B Biol Sci 364: 2795–2808.

    PubMed  Google Scholar 

  127. Welker WI (1959) Escape, exploratory, and food-seeking responses of rats in a novel situation. J Comp Physiol Psychol 52: 106–111.

    PubMed  CAS  Google Scholar 

  128. Misslin R, Belzung C, Vogel E (1989) Behavioural validation of a light/dark choice procedure for testing anti-anxiety agents. Behavioural Processes 18: 119–132.

    Google Scholar 

  129. Keller FS (1941) Light aversion in the white rat. Psychological Record 4: 235–250.

    Google Scholar 

  130. Crawley J, Goodwin FK (1980) Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav 13: 167–170.

    PubMed  CAS  Google Scholar 

  131. Bourin M, Hascoet M (2003) The mouse light/dark box test. Eur J Pharmacol 463: 55–65.

    PubMed  CAS  Google Scholar 

  132. Russo AF, Kuburas A, Kaiser EA, Raddant AC, Recober A (2009) A Potential Preclinical Migraine Model: CGRP-Sensitized Mice. Mol Cell Pharmacol 1: 264–270.

    PubMed  CAS  Google Scholar 

  133. Recober A, Kaiser EA, Kuburas A, Russo AF (2010) Induction of multiple photophobic behaviors in a transgenic mouse sensitized to CGRP. Neuropharmacology 58: 156–165.

    PubMed  CAS  Google Scholar 

  134. Altman J (1962) Effects of lesions in central nervous visual structures on light aversion of rats. Am J Physiol 202: 1208–1210.

    PubMed  CAS  Google Scholar 

  135. Sekaran S, Lupi D, Jones SL, Sheely CJ, Hattar S, et al. (2005) Melanopsin-dependent photoreception provides earliest light detection in the Mammalian retina. Curr Biol 15: 1099–1107.

    PubMed  CAS  Google Scholar 

  136. Johnson J, Wu V, Donovan M, Majumdar S, Renteria RC, et al. (2010) Melanopsin-dependent light avoidance in neonatal mice. Proc Natl Acad Sci U S A 107: 17374–17378.

    PubMed  CAS  Google Scholar 

  137. Crozier WJ, Pincus G (1927) Phototropism in Young Rats. J Gen Physiol 10: 407–417.

    PubMed  CAS  Google Scholar 

  138. Hetherington L, Benn M, Coffey PJ, Lund RD (2000) Sensory capacity of the royal college of surgeons rat. Invest Ophthalmol Vis Sci 41: 3979–3983.

    PubMed  CAS  Google Scholar 

  139. Mrosovsky N, Hampton RR (1997) Spatial responses to light in mice with severe retinal degeneration. Neurosci Lett 222: 204–206.

    PubMed  CAS  Google Scholar 

  140. Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, et al. (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329: 413–417.

    PubMed  CAS  Google Scholar 

  141. Thiels E, Hoffman EK, Gorin MB (2008) A reliable behavioral assay for the assessment of sustained photophobia in mice. Curr Eye Res 33: 483–491.

    PubMed  Google Scholar 

  142. Onaivi ES, Martin BR (1989) Neuro­pharmacological and physiological validation of a computer-controlled two-compartment black and white box for the assessment of ­anxiety. Prog Neuropsychopharmacol Biol Psychiatry 13: 963–976.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter John Coffey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Semo, M., Gias, C., Vugler, A., Coffey, P.J. (2011). Assessments of Visual Function. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 62. Humana Press. https://doi.org/10.1007/978-1-61779-301-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-301-1_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-300-4

  • Online ISBN: 978-1-61779-301-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics