Skip to main content

Methodological Strategies to Evaluate Functional Effectors Related to Parkinson’s Disease Through Application of Caenorhabditis elegans Models

  • Protocol
  • First Online:
  • 1576 Accesses

Part of the book series: Neuromethods ((NM,volume 61))

Abstract

Improvements to the diagnosis and treatment of Parkinson disease (PD) are dependent upon the identification and molecular understanding of modifiers of neuronal degeneration. Here, we describe the use of multifactorial functional analyses to exploit the experimental attributes of the nematode, Caenorhabditis elegans, to accelerate the translational path toward identification and characterization of modifiers of dopaminergic neurogeneration. C. elegans is ideal for both screening and target validation of potential modifiers. Specific assays discussed in this technical overview include in vivo analyses using whole, intact, and living nematodes with readouts for age-dependent α-synuclein-proteotoxicity and 6-hydroxydopamine-induced neurodegeneration in dopamine (DA) neurons. These methods provide an integrated approach to target characterization and functional validation in C. elegans that allow researchers to prioritize lead candidates for translation toward mammalian systems.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805.

    Article  PubMed  CAS  Google Scholar 

  2. Chen P, Burdette AJ, Porter JC et al (2010) The early-onset torsion dystonia-associated protein, torsinA, is a homeostatic regulator of endoplasmic reticulum stress response. Hum Mol Genet 19:3502–3515.

    Article  PubMed  CAS  Google Scholar 

  3. Voisine C, Varma H, Walker N (2005) Identification of potential therapeutic drugs for Huntington’s disease using Caenorhabditis elegans. PLoS One. 2:e504.

    Article  Google Scholar 

  4. Wang J, Farr GW, Hall DH et al (2009) An ALS-linked mutant SOD1 produces a locomotor defect associated with aggregation and synaptic dysfunction when expressed in neurons of Caenorhabditis elegans. PLoS Genet 5:e1000350.

    Article  PubMed  Google Scholar 

  5. Anderson P (1995) Mutagenesis. Meth Cell Biol 48:31–58.

    Article  CAS  Google Scholar 

  6. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94.

    PubMed  CAS  Google Scholar 

  7. Samuelson AV, Carr CE, Ruvkun G (2007) Gene activities that mediate increased life span of C. elegans insulin-like signaling mutants. 21:2976–2994.

    Google Scholar 

  8. Dimitriadi M, Sleigh JN, Walker A et al (2009) Conserved genes act as modifiers of invertebrate SMN loss of function defects. PLoS Genet 6:e1001172.

    Article  Google Scholar 

  9. Chalfie M, White J (1988) The nervous system. In: Wood WB (ed) The Nematode Caenorhabditis elegans, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  10. Bargmann CI (1998) Neurobiology of the C. elegans Genome. Science. 282:2028–2033.

    Article  PubMed  CAS  Google Scholar 

  11. White JG, Southgate E, Thomson JN et al (1986) The structure of the nervous system of Caenorhabditis elegans. Phil Trans R Soc Lond [Biol] 275:327–348.

    Article  Google Scholar 

  12. Goodman MB, Hall DH, Avery L et al (1998) Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron 20:763–772.

    Article  PubMed  CAS  Google Scholar 

  13. Sawin ER, Ranganathan R, Horvitz HR (2000) C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26:619–633.

    Article  PubMed  CAS  Google Scholar 

  14. McDonald PW, Jessen T, Field JR et al (2006) Dopamine signaling architecture in Caenorhabditis elegans. Cell Mol Neurobiol 26:593–618.

    Article  PubMed  CAS  Google Scholar 

  15. Ramot D, Johnson BE, Berry TL et al (2008) The Parallel Worm Tracker: a platform for measuring average speed and drug-induced paralysis in nematodes. PLoS One 3:e2208.

    Article  PubMed  Google Scholar 

  16. Sämann J, Hegermann SJ, Gromoff EV et al (2009) Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J Biol Chem 284:16482–16491.

    Article  PubMed  Google Scholar 

  17. Hamamichi S, Rivas RN, Knight AL et al (2008) Hypothesis-based RNAi screening identifies neuroprotective genes in a Parkinson’s disease model. Proc Nat Acad Sci USA 105:728–733.

    Article  PubMed  CAS  Google Scholar 

  18. van Ham TJ, Thijssen KL, Breitling R et al (2008) C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 4:e1000027.

    Article  PubMed  Google Scholar 

  19. Lakso M, Vartiainen S, Moilanen AM et al (2003) Dopaminergic neuronal loss and motor defecits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem 86:165–172.

    Article  PubMed  CAS  Google Scholar 

  20. Ved R, Saha S, Westlund B et al (2005) Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of α-synuclein, parkin, and DJ-1 in Caenorhabditis elegans. J Biol Chem 280:42655–42668.

    Article  PubMed  CAS  Google Scholar 

  21. Kuwahara T, Koyama A, Koyama S et al (2008) A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in alpha-synuclein transgenic C. elegans. Hum Mol Genet 17:2997–3009.

    Article  PubMed  CAS  Google Scholar 

  22. Cao S, Gelwix CC, Caldwell KA et al (2005) Torsin-mediated neuroprotection from cellular stresses to dopaminergic neurons of C. elegans. J Neurosci 25:3801–3812.

    Article  PubMed  CAS  Google Scholar 

  23. Caldwell GA, Caldwell KA (2008) Traversing a wormhole to combat Parkinson’s disease. Dis Mod Mech 1:32–36.

    Article  Google Scholar 

  24. Garcia SM, Casanueva MO, Silva MC et al (2007) Neuronal signaling modulates protein homeostasis in Caenorhabditis elegans post-synaptic muscle cells. Genes Dev 21:3006–3016.

    Article  PubMed  CAS  Google Scholar 

  25. Nass R, Hahn MK, Jessen T et al (2005) Genetic screen in Caenorhabditis elegans fordopamine neuron insensitivity to 6-hydroxydopamine identifies dopamine transporter mutants impacting transporter biosynthesis and trafficking. J Neurochem 94:774–785.

    Article  PubMed  CAS  Google Scholar 

  26. Komatsu M, Waguri S, Chiba T et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006 441:880–884.

    Article  PubMed  CAS  Google Scholar 

  27. Bowers K, Stevens TH (2005) Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1744:438–454.

    Article  PubMed  CAS  Google Scholar 

  28. Ruan Q, Harrington AJ, Caldwell KA et al (2010) VPS41, a protein involved in lysosomal trafficking, is protective in Caenorhabditis elegans and mammalian cellular models of Parkinson’s disease. Neurobiol Dis 37:330–338.

    Article  PubMed  CAS  Google Scholar 

  29. Fung HC, Scholz S, Matarin M et al (2006) Genome-wide genotyping in Parkinson’s disease and neurologically normal controls: first stage analysis and public release of data. Lancet Neurol 5:911–916.

    Article  PubMed  CAS  Google Scholar 

  30. Cooper AA, Gitler AD, Cashikar A et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328.

    Article  PubMed  CAS  Google Scholar 

  31. Gitler AD, Bevis BJ, Shorter J et al (2008) The Parkinson’s disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc Natl Acad Sci USA 105:145–150.

    Article  PubMed  CAS  Google Scholar 

  32. Su LJ, Auluck PK, Outeiro TF et al (2010) Compounds from an unbiased chemicalscreen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson’s disease models. Dis Mod Mech 3:194–208.

    Article  CAS  Google Scholar 

  33. Avery L, Horvitz RH (1990) Effects of starvation and neuroactive drugs on feeding inCaenorhabditis elegans. J Exp Zool 253:263–270.

    Article  PubMed  CAS  Google Scholar 

  34. McIntire SL, Jorgensen E, Horvitz HR (1993) Genes required for GABA function in Caenorhabditis elegans. Nature 364:334–337.

    Article  PubMed  CAS  Google Scholar 

  35. Crowder CM, Shebester LD, Schedl T (1996) Behavioral Effects of Volatile Anesthetics in Caenorhabditis elegans. Anesthesiology 85:901–912.

    Article  PubMed  CAS  Google Scholar 

  36. Evason K, Huang C, Yamben I et al (2005) Anticonvulsant medications extend worm life-span. Science 307:258–262.

    Article  PubMed  CAS  Google Scholar 

  37. Kwok TC, Ricker N, Fraser R et al (2006) A small-molecule screen in C. elegans yields a new calcium channel antagonist. Nature 441:91–95.

    Article  PubMed  CAS  Google Scholar 

  38. Cao S, Hewett JW, Yokoi F et al (2010) Chemical enhancement of torsinA function in cell and animal models of torsion dystonia. Dis Mod Mech 3:386–396.

    Article  CAS  Google Scholar 

  39. Marvanova M, Nichols CD (2007) Identification of neuroprotective compounds of caenorhabditis elegans dopaminergic neurons against 6-OHDA. J Mol Neurosci 31:127–137.

    PubMed  CAS  Google Scholar 

  40. Wang Y, Branicky R, Stepanyan Z et al (2009) The anti-neurodegeneration drug clioquinol inhibits the aging-associated protein CLK-1. J Biol Chem 284:314–323.

    Article  PubMed  CAS  Google Scholar 

  41. Locke CJ, Fox SA, Caldwell GA et al (2008) Acetaminophen attenuates dopamine neuron degeneration in animal models of Parkinson’s disease. Neurosci Lett 439:129–133.

    Article  PubMed  CAS  Google Scholar 

  42. Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047.

    Article  PubMed  CAS  Google Scholar 

  43. Conway KA, Lee SJ, Rochet JC et al (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: Implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97:571–576.

    Article  PubMed  CAS  Google Scholar 

  44. Singleton AB, Farrer M, Johnson J et al (2003) alpha-synuclein locus triplication causes Parkinson’s disease. Science 302:841.

    Article  PubMed  CAS  Google Scholar 

  45. Pankratz N, Wilk JB, Latourelle JC et al (2009) Genome-wide association study for susceptibility genes contributing to familial Parkinson disease. Hum Genet 124:593–605.

    Article  PubMed  CAS  Google Scholar 

  46. Harrington AJ, Knight AL, Caldwell GA et al (2011) C. elegans as a model system for identifying effectors of a-synuclein misfolding and dopaminergic cell death associated with Parkinson’s disease. Methods 53:220–225.

    Google Scholar 

  47. McLean PJ, Kawamata H, Shariff S et al (2002) TorsinA and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggregation. J Neurochem 83:846–854.

    Article  PubMed  CAS  Google Scholar 

  48. Caldwell GA, Cao S, Sexton EG et al (2003) Suppression of polyglutamine-induced protein aggregation in Caenorhabditis elegans by torsin proteins. Hum Mol Genet 12:307–319.

    Article  PubMed  CAS  Google Scholar 

  49. Kumar R, Agarwal AK, Seth PK (1995) Free radical-generated neurotoxicity of 6-hydroxydopamine. J Neurochem 64:1703–1707.

    Article  PubMed  CAS  Google Scholar 

  50. Foley P, Riederer P (2000) Influence of neurotoxins and oxidative stress on the onset and progression of Parkinson’s disease. J Neurol 247 Suppl 2:II82–94.

    Google Scholar 

  51. Nass R, Hall DH, Miller DM 3rd et al (2002) Neurotoxin-induced degeneration of dopamine neurons in Caenorhabditis elegans. Proc Natl Acad Sci USA 99:3264–3269.

    Article  PubMed  CAS  Google Scholar 

  52. Tucci ML, Harrington AJ, Caldwell GA et al (2011) Modeling dopamine neuron degeneration in C. elegans. In: Manfredi G, Kawamata, H (eds) Methods in Molecular Biology: Neurodegeneration.

    Google Scholar 

  53. Berkowitz LA, Hamamichi S, Knight AL et al (2008) Application of a C. elegans dopamine neurons degeneration assay for validation of potential Parkinson’s disease gene candidates. J Vis Exp doi:10.3791/835.

  54. Berkowitz LA, Knight AL, Caldwell GA et al (2008) Microinjection and selection of transgenic animals in C. elegans. J Vis Exp doi:10.3791/833.

  55. Asikainen S, Vartiainen S, Lasko M et al (2005) Selective sensitivity of Caenorhabditis elegans neurons to RNA inteference. Neuroreport 16:1995–1999.

    Article  PubMed  CAS  Google Scholar 

  56. Locke CJ, Williams SN, Schwarz EM et al (2006) Genetic interactions among cortical malformation genes that influence susceptibility to convulsions in C. elegans.

    Google Scholar 

  57. Locke CJ, Kautu BB, Berry KP et al (2009) Pharmacogenetic analysis reveals a post-developmental role for Rac GTPases in Caenorhabditis elegans GABAergic neurotransmission. Genetics 183(4):1357–72. Brain Res 1120:23–34.

    Article  Google Scholar 

  58. Calixto A, Chelur D, Topalidou I et al (2010) Enhanced neuronal RNAi in C. elegans using SID-1. Nat Meth 7:554–561.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank our collaborators and all members of the Caldwell laboratory for their collegiality and contributions to the research presented here. Special thanks to Adam Harrington for generating the data presented on neuronal RNAi and Michelle Tucci for C. elegans DA neuron images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim A. Caldwell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Caldwell, K.A., Caldwell, G.A. (2011). Methodological Strategies to Evaluate Functional Effectors Related to Parkinson’s Disease Through Application of Caenorhabditis elegans Models. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 61. Humana Press. https://doi.org/10.1007/978-1-61779-298-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-298-4_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-297-7

  • Online ISBN: 978-1-61779-298-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics