Advertisement

6-OHDA Toxin Model in Mouse

Protocol
Part of the Neuromethods book series (NM, volume 61)

Abstract

The unilateral 6-hydroxydopamine mouse model has received considerable attention of late as a model complementary to the hemi-parkinsonian rat. Although both species are similar in nature, there are significant differences between the two when conducting stereotaxic surgery, such as anaesthesia maintenance, technical procedure and differences in lesion co-ordinates. In the present chapter, we therefore discuss detailed methods, problems and suitability of mouse lesion techniques. Mice are also more prone to high post-lesion mortality rates and weight loss, therefore requiring more vigilant care. We describe basic behavioural tests that determine the level of dopaminergic cell death in mice, namely: drug-induced and spontaneous rotations, elevated beam test, staircase test, cylinder test, corridor, and rotarod for assessing lesion-induced deficits in mice. A number of other tests used to assess the rat model cannot however be adapted for use in the mouse.

Key words

6-OHDA Mouse Motor asymmetry Behaviour 

Notes

Acknowledgments

Our experiments in this field are supported by grants from the UK Medical Research Council, the UK Biotechnology and Biological Science Research Council, and the European Union Seventh Framework programme.

References

  1. 1.
    Jacobowitz, D.M., Burns, R.S., Chiueh, C.C., and Kopin, I.J. (1984). N-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) causes destruction of the nigrostriatal but not the mesolimbic dopamine system in the monkey. Psychopharmacol Bull. 20(3): 416–22.PubMedGoogle Scholar
  2. 2.
    Ungerstedt, U. (1968). 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol. 5(1): 107–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Sundstrom, E., Fredriksson, A., and Archer, T. (1990). Chronic neurochemical and behavioral changes in MPTP-lesioned C57BL/6 mice: a model for Parkinson’s disease. Brain Res. 528(2): 181–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Sedelis, M., Hofele, K., Auburger, G.W., Morgan, S., Huston, J.P., and Schwarting, R.K. (2000). MPTP susceptibility in the mouse: behavioral, neurochemical, and histological analysis of gender and strain differences. Behavior Genetics. 30(3): 171–82.PubMedCrossRefGoogle Scholar
  5. 5.
    Mandel, R.J. and Randall, P.K. (1985). Quantification of lesion-induced dopaminergic supersensitivity using the rotational model in the mouse. Brain Res. 330(2): 358–63.PubMedCrossRefGoogle Scholar
  6. 6.
    Iancu, R., Mohapel, P., Brundin, P., and Paul, G. (2005). Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson’s disease in mice. Behav Brain Res. 162(1): 1–10.PubMedCrossRefGoogle Scholar
  7. 7.
    Grealish, S., Mattsson, B., Draxler, P., and Bjorklund, A. (2010). Characterisation of behavioural and neurodegenerative changes induced by intranigral 6-hydroxydopamine lesions in a mouse model of Parkinson’s disease. Eur J Neurosci. 31(12): 2266–78.PubMedCrossRefGoogle Scholar
  8. 8.
    Ungerstedt, U. and Arbuthnott, G.W. (1970). Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res. 24(3): 485–93.PubMedCrossRefGoogle Scholar
  9. 9.
    Torres, E.M. and Dunnett, S.B. (2007). Amphetamine induced rotation in the assessment of lesions and grafts in the unilateral rat model of Parkinson’s disease. Eur Neuropsychopharmacol. 17(3): 206–14.PubMedCrossRefGoogle Scholar
  10. 10.
    Voigtlander, P.F. and Moore, K.E. (1971). Nigro-striatal pathway: stimulation-evoked release of ( 3 H)dopamine from caudate nucleus. Brain Res. 35(2): 580–3.PubMedCrossRefGoogle Scholar
  11. 11.
    Costall, B., Fortune, D.H., and Naylor, R.J. (1976). Biphasic changes in motor behaviour following morphine injection into the nucleus accumbens (proceedings). Br J Pharmacol. 57(3): 423P.PubMedGoogle Scholar
  12. 12.
    Costall, B., Marsden, C.D., Naylor, R.J., and Pycock, C.J. (1976). The relationship between striatal and mesolimbic dopamine dysfunction and the nature of circling responses following 6-hydroxydopamine and electrolytic lesions of the ascending dopamine systems of rat brain. Brain Res. 118(1): 87–113.PubMedCrossRefGoogle Scholar
  13. 13.
    Schmidt, J. and Westermann, K.H. (1980). Effects of preceding sensibilization by reserpine and haloperidol on toxicity of dopaminergic agonists. Arch Toxicol Suppl. 4: 479–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Cenci, M.A. and Lundblad, M. (2007). Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson’s disease in rats and mice. Curr Protoc Neurosci. Chapter 9: Unit 9 25.Google Scholar
  15. 15.
    Dowd, E., Monville, C., Torres, E.M., and Dunnett, S.B. (2005). The Corridor Task: a simple test of lateralised response selection sensitive to unilateral dopamine deafferentation and graft-derived dopamine replacement in the striatum. Brain Res Bull. 68(1–2): 24–30.PubMedCrossRefGoogle Scholar
  16. 16.
    Olsson, M., Nikkhah, G., Bentlage, C., and Bjorklund, A. (1995). Forelimb akinesia in the rat Parkinson model: differential effects of dopamine agonists and nigral transplants as assessed by a new stepping test. J Neurosci. 15(5 Pt 2): 3863–75.PubMedGoogle Scholar
  17. 17.
    Schallert, T., Fleming, S.M., Leasure, J.L., Tillerson, J.L., and Bland, S.T. (2000). CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology. 39(5): 777–87.PubMedCrossRefGoogle Scholar
  18. 18.
    Schallert, T., Whishaw, I.Q., Ramirez, V.D., and Teitelbaum, P. (1978). Compulsive, abnormal walking caused by anticholinergics in akinetic, 6-hydroxydopamine-treated rats. Science. 199(4336): 1461–3.PubMedCrossRefGoogle Scholar
  19. 19.
    Brooks, S., Higgs, G., Janghra, N., Jones, L., and Dunnett, S.B. (2010). Longitudinal analysis of the behavioural phenotype in YAC128 (C57BL/6J) Huntington’s disease transgenic mice. Brain Research Bulletin.Google Scholar
  20. 20.
    Montoya, C.P., Campbell-Hope, L.J., Pemberton, K.D., and Dunnett, S.B. (1991). The “staircase test”: a measure of independent forelimb reaching and grasping abilities in rats. J Neurosci Methods. 36(2–3): 219–28.PubMedCrossRefGoogle Scholar
  21. 21.
    Baird, A.L., Meldrum, A., and Dunnett, S.B. (2001). The staircase test of skilled reaching in mice. Brain Res Bull. 54(2): 243–50.PubMedCrossRefGoogle Scholar
  22. 22.
    Dowd, E., Monville, C., Torres, E.M., Wong, L.F., Azzouz, M., Mazarakis, N.D., and Dunnett, S.B. (2005). Lentivector-mediated delivery of GDNF protects complex motor functions relevant to human Parkinsonism in a rat lesion model. Eur J Neurosci. 22(10): 2587–95.PubMedCrossRefGoogle Scholar
  23. 23.
    Monville, C., Torres, E.M., and Dunnett, S.B. (2006). Comparison of incremental and accelerating protocols of the rotarod test for the assessment of motor deficits in the 6-OHDA model. J Neurosci Methods. 158(2): 219–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Paxinos, G., and Franklin, K.B.J., ed. The Mouse Brain in Stereotaxic Coordinates. 2 ed. 2001, Academic Press: London.Google Scholar
  25. 25.
    Winkler, J.D. and Weiss, B. (1986). Reversal of supersensitive apomorphine-induced rotational behavior in mice by continuous exposure to apomorphine. The Journal of Pharmacology and Experimental Therapeutics. 238(1): 242–7.PubMedGoogle Scholar
  26. 26.
    Gaspar, P., Febvret, A., and Colombo, J. (1993). Serotonergic sprouting in primate MTP-induced hemiparkinsonism. Exp Brain Res. 96(1): 100–6.PubMedGoogle Scholar
  27. 27.
    Dunnett, S.B., Torres, E.M., and Annett, L.E. (1998). A lateralised grip strength test to evaluate unilateral nigrostriatal lesions in rats. Neurosci Lett. 246(1): 1–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Cordeiro, K.K., Jiang, W., Papazoglou, A., Tenorio, S.B., Dobrossy, M., and Nikkhah, G. (2010). Graft-mediated functional recovery on a skilled forelimb use paradigm in a rodent model of Parkinson’s disease is dependent on reward contingency. Behav Brain Res. 212(2): 187–95.PubMedCrossRefGoogle Scholar
  29. 29.
    Kloth, V., Klein, A., Loettrich, D., and Nikkhah, G. (2006). Colour-coded pellets increase the sensitivity of the staircase test to differentiate skilled forelimb performances of control and 6-hydroxydopamine lesioned rats. Brain Res Bull. 70(1): 68–80.PubMedCrossRefGoogle Scholar
  30. 30.
    Monville, C., Torres, E.M., and Dunnett, S.B. (2006). Comparison of incremental and accelerating protocols of the rotarod test for the assessment of motor deficits in the 6-OHDA model. J Neurosci Methods.Google Scholar
  31. 31.
    Von Voigtlander, P.F. and Moore, K.E. (1973). Turning behavior of mice with unilateral 6-hydroxydopamine lesions in the striatum: effects of apomorphine, L-DOPA, amanthadine, amphetamine and other psychomotor stimulants. Neuropharmacology. 12(5): 451–62.CrossRefGoogle Scholar
  32. 32.
    Torello, M.W., Czekajewski, J., Potter, E.A., Kober, K.J., and Fung, Y.K. (1983). An automated method for measurement of circling behavior in the mouse. Pharmacology, Biochemistry, and Behavior. 19(1): 13–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Randall, P.K. (1984). Lesion-induced DA supersensitivity in aging C57BL/6J mice. Brain Research. 308(2): 333–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Brundin, P., Isacson, O., Gage, F.H., Prochiantz, A., and Bjorklund, A. (1986). The rotating 6-hydroxydopamine-lesioned mouse as a model for assessing functional effects of neuronal grafting. Brain Research. 366(1–2): 346–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Thermos, K., Winkler, J.D., and Weiss, B. (1987). Comparison of the effects of fluphenazine-N-mustard on dopamine binding sites and on behavior induced by apomorphine in supersensitive mice. Neuropharmacology. 26(10): 1473–80.PubMedCrossRefGoogle Scholar
  36. 36.
    Mandel, R.J. and Randall, P.K. (1990). Bromocriptine-induced rotation: characterization using a striatal efferent lesion in the mouse. Brain Research Bulletin. 24(2): 175–80.PubMedCrossRefGoogle Scholar
  37. 37.
    Bensadoun, J.C., Deglon, N., Tseng, J.L., Ridet, J.L., Zurn, A.D., and Aebischer, P. (2000). Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson’s disease using GDNF. Experimental Neurology. 164(1): 15–24.PubMedCrossRefGoogle Scholar
  38. 38.
    Lundblad, M., Picconi, B., Lindgren, H., and Cenci, M.A. (2004). A model of L-DOPA-induced dyskinesia in 6-hydroxydopamine lesioned mice: relation to motor and cellular parameters of nigrostriatal function. Neurobiology of Disease. 16(1): 110–23.PubMedCrossRefGoogle Scholar
  39. 39.
    Lundblad, M., Usiello, A., Carta, M., Hakansson, K., Fisone, G., and Cenci, M.A. (2005). Pharmacological validation of a mouse model of l-DOPA-induced dyskinesia. Experimental Neurology. 194(1): 66–75.PubMedCrossRefGoogle Scholar
  40. 40.
    Liang, Q., Smith, A.D., Pan, S., Tyurin, V.A., Kagan, V.E., Hastings, T.G., and Schor, N.F. (2005). Neuroprotective effects of TEMPOL in central and peripheral nervous system models of Parkinson’s disease. Biochemical Pharmacology. 70(9): 1371–81.PubMedCrossRefGoogle Scholar
  41. 41.
    Pavon, N., Martin, A.B., Mendialdua, A., and Moratalla, R. (2006). ERK phosphorylation and FosB expression are associated with L-DOPA-induced dyskinesia in hemiparkinsonian mice. Biological Psychiatry. 59(1): 64–74.PubMedCrossRefGoogle Scholar
  42. 42.
    Santini, E., Valjent, E., Usiello, A., Carta, M., Borgkvist, A., Girault, J.A., Herve, D., Greengard, P., and Fisone, G. (2007). Critical involvement of cAMP/DARPP-32 and extracellular signal-regulated protein kinase signaling in L-DOPA-induced dyskinesia. J. Neurosci. 27(26): 6995–7005.CrossRefGoogle Scholar
  43. 43.
    Alvarez-Fischer, D., Blessmann, G., Trosowski, C., Behe, M., Schurrat, T., Hartmann, A., Behr, T.M., Oertel, W.H., Hoglinger, G.U., and Hoffken, H. (2007). Quantitative ((123)I)FP-CIT pinhole SPECT imaging predicts striatal dopamine levels, but not number of nigral neurons in different mouse models of Parkinson’s disease. NeuroImage. 38(1): 5–12.PubMedCrossRefGoogle Scholar
  44. 44.
    Richter, F., Hamann, M., and Richter, A. (2008). Moderate degeneration of nigral neurons after repeated but not after single intrastriatal injections of low doses of 6-hydroxydopamine in mice. Brain Research. 1188: 148–56.PubMedCrossRefGoogle Scholar
  45. 45.
    Alvarez-Fischer, D., Henze, C., Strenzke, C., Westrich, J., Ferger, B., Hoglinger, G.U., Oertel, W.H., and Hartmann, A. (2008). Characterization of the striatal 6-OHDA model of Parkinson’s disease in wild type and alpha-synuclein-deleted mice. Experimental Neurology. 210(1): 182–93.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.The Brain Repair Group, School of BiosciencesCardiff UniversityCardiffUK

Personalised recommendations