Skip to main content

Targeted Deletion of Hsf1, 2, and 4 Genes in Mice

  • Protocol
  • First Online:
Molecular Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 787))

Abstract

Heat-shock transcription factors (Hsfs) regulate transcription of heat-shock proteins as well as other genes whose promoters contain heat-shock elements. There are at least five Hsfs in mammalian cells, Hsf1, Hsf2, Hsf3, Hsf4, and Hsfy. To understand the physiological roles of Hsf1, Hsf2, and Hsf4 in vivo, we generated knockout mouse lines for these factors. In this chapter, we describe the design of the targeting vectors, the plasmids used, and the successful generation of mice lacking the individual genes. We also briefly describe what we have learned about the physiological functions of these genes in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu C. Heat shock transcription factors:structure and regulation. Ann Rev Cell Dev Biol 1995;11:441–69.

    Article  CAS  Google Scholar 

  2. Morimoto RI. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 1998;12:3788–96.

    Article  PubMed  CAS  Google Scholar 

  3. Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI, Nagata K. HSF-4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol Cell Biol 1997;17:469–81.

    PubMed  CAS  Google Scholar 

  4. Hu Y, Mivechi NF. Association and regulation of heat shock transcription factor 4b with both extracellular signal-regulated kinase mitogen-activated protein kinase and dual-specificity tyrosine phosphatase DUSP26. Mol Cell Biol 2006;8:3282–94.

    Article  Google Scholar 

  5. Muller U. Ten years of gene targeting:targeted mouse mutants, from vector design to phenootype analysis. Mechanisms of Development 1999;82:3–21.

    Article  PubMed  CAS  Google Scholar 

  6. Van Der Weyden L, Adams DJ, Bradley A. Tools for targeted manipulation of the mouse genome. Phsiol Genomics 2202;11:133–64.

    Google Scholar 

  7. Bockamp E, Sprengel R, Eshkind L, Lehmann T, Braun JM, Emmrich F, Hengstler JG. Conditional transgenic mouse models: from the basics to genome-wide sets of knockouts and current studies of tissue regeneration. Regen Med 2008;3:217–35.

    Article  PubMed  CAS  Google Scholar 

  8. Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind I, Oesch F, Zabel B. Of mice and models: improved animal models for biomedical research. Physiol Genomics 2002;11:115–32.

    PubMed  CAS  Google Scholar 

  9. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A laboratroy Manual 1989; Second Edition.

    Google Scholar 

  10. Limaye A, Hall B, and Kulkarni AB. Manipulation of Mouse Embryonic Stem Cells for Knockout Mouse Production. Current Protocols in Cell Biology 2009;44 Unit 19.13:1–24.

    Google Scholar 

  11. Zhang Y, Huang L, Zhang J, Moskophidis D, Mivechi NF. Targeted disruption of hsf1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible Hsp molecular chaperones. J Cell Biochem 2002;86:376–93.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang Y, Koushik S, Dai R, Mivechi NF. Structural organization and promoter analysis of murine heat shock transcription factor-1 gene. J Biol Chem 1998;273:32514–21.

    Article  PubMed  CAS  Google Scholar 

  13. Wang G, Zhang J, Moskophidis D, Mivechi NF. Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased embryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis 2003;36:48–61.

    Article  PubMed  CAS  Google Scholar 

  14. Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 1987;51:503–12.

    Article  PubMed  CAS  Google Scholar 

  15. Godwin AR, Stadler HS, Nakamura K, Capecchi MR. Detection of targeted GFP-Hox gene fusions during mouse embryogenesis. Proc Natl Acad Sci USA 1998;95:13042–7.

    Article  PubMed  CAS  Google Scholar 

  16. Min J, Zhang Y, Moskophidis D, Mivechi NF. Unique contribution of heat shock transcription factor 4 in ocular lens development and fiber cell differentiation. Genesis 2004;40:205–17.

    Article  PubMed  CAS  Google Scholar 

  17. Huang L, Mivechi NF, Moskophidis D. Insights into regulation and function of the major stress-induced hsp70 molecular chaperone in vivo: Analysis of mice with targeted gene disruption of the hsp70.1 or hsp70.3 genes. Mol Cell Biol 2001;21:8575–91.

    Article  PubMed  CAS  Google Scholar 

  18. Huang L, Min J, Maters S, Mivechi NF, Moskophidis DI. Insights into the function and regulation and of small hsp25 (HSPB1) in mouse model with targeted gene disruption. Genesis 2007;45:487–501.

    Article  PubMed  CAS  Google Scholar 

  19. Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, Benjamin IJ. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 1999;18:5943–52.

    Article  PubMed  CAS  Google Scholar 

  20. Sugahara K, Inouye S, Izu H, Katoh Y, Katsuki K, Takemoto T, Shimogori H, Yamashita, H, Nakai A. Heat shock transcription factor HSF1 is required for survival of sensory hair cells against acoustic overexposure. Hear Res 2003;182:88–96.

    Article  PubMed  CAS  Google Scholar 

  21. McMillan DR, Christians E, Forster M, Xiao X, Connell P, Plumier JC, Zuo X, Richardson J, Morgan S, Benjamin IJ. Heat shock transcription factor 2 is not essential for embryonic development, fertility, or adult cognitive and psychomotor function in mice. Mol Cell Biol 2002;22:8005–14.

    Article  PubMed  CAS  Google Scholar 

  22. Kallio M, Chang Y, Manuel M, Alastalo TP, Rallu M, Gitton Y, Pirkkala L, Loones, MT, Paslaru L, Larney S, Hiard S, Morange M, Sistonen L, Mezger V. Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice. EMBO J 2002;21:2591–601.

    Article  PubMed  CAS  Google Scholar 

  23. Fujimoto M, Izu H, Seki K, Fukuda K, Nishida T, Shuichi Y, Kato K, Yonemura S, Inouye S, Nakai A. HSF4 is required for normal cell growth and differentiation during mouse lens developments. EMBO J 2004;23:4297–306.

    PubMed  CAS  Google Scholar 

  24. Christians E, Davis AA, Thomas SD, Benjamin IJ. Maternal effect of Hsf1 on reproductive success. Nature 2000;407:693–4.

    Article  PubMed  CAS  Google Scholar 

  25. Homma S, Jin X, Wang G, et al. Demyelination, astrogliosis, and accumulation of ubiquitinated proteins, hallmarks of CNS disease in hsf1-deficient mice. J Neurosci 2007;27:7974–86.

    Article  PubMed  CAS  Google Scholar 

  26. Jin X, Moskophidis D, Hu Y, Phillips A, Mivechi NF. Heat shock factor 1 deficiency via its downstream target gene alphaB-crystallin (Hspb5) impairs p53 degradation. J Cell Biochem 2009;107:504–15.

    Article  PubMed  CAS  Google Scholar 

  27. Min J-N, Huang L, Zimonjic D, Moskophidis D, Mivechi NF. Selective suppression of lymphomas by functional loss of hsf1 in a p53-deficient mouse model of spontaneous tumors. Oncogene 2007;26:5086–97.

    Article  PubMed  CAS  Google Scholar 

  28. Wang G, Ying Z, Jin X, Tu N, Zhang Y, Phillips M, Moskophidis D, Mivechi NF. Essentail requirement for both hsf1 and hsf2 transcriptional activity activity in spermatogenesis and male fertility. Genesis 2004;38:66–80.

    Article  PubMed  Google Scholar 

  29. Bu L, Jin Y, Shi Y, et al. Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat Genet 2002;31:276–8.

    Article  PubMed  CAS  Google Scholar 

  30. Koni PA, Joshi SK, Temann UA, Olson D, Burkly L, and Flavell RA. Conditional vascular cell adhesion molecule 1 deletion in mice: Impaired lymphocyte migration to bone marrow. J Exp Med 2001;193:741–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by VA Award 1I01BX000161 and NIH grants CA062130 and CA132640 (NFM) and CA121951 and CA121951-07S2 (DM). For generation of hsf knockout mice, the microinjection of ES cells and generation of chimeras were conducted in the Medical College of Georgia Embryonic Stem Cell and Transgenic Core Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid F. Mivechi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jin, X., Eroglu, B., Moskophidis, D., Mivechi, N.F. (2011). Targeted Deletion of Hsf1, 2, and 4 Genes in Mice. In: Calderwood, S., Prince, T. (eds) Molecular Chaperones. Methods in Molecular Biology, vol 787. Humana Press. https://doi.org/10.1007/978-1-61779-295-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-295-3_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-294-6

  • Online ISBN: 978-1-61779-295-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics