Skip to main content

Fluorescence Imaging of Single Kinesin Motors on Immobilized Microtubules

  • Protocol
  • First Online:
Single Molecule Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 783))

Abstract

Recent developments in optical microscopy and nanometer tracking have greatly improved our understanding of cytoskeletal motor proteins. Using fluorescence microscopy, dynamic interactions are now routinely observed in vitro on the level of single molecules mainly using a geometry, where fluorescently labeled motors move on surface-immobilized filaments. In this chapter, we review recent methods related to single-molecule kinesin motility assays. In particular, we aim to provide practical advice on: how to set up the assays, how to acquire high-precision data from fluorescently labeled kinesin motors and attached quantum dots, and how to analyze data by nanometer tracking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sheetz, M. P., and Spudich, J. A. (1983) Movement of Myosin-Coated Fluorescent Beads on Actin Cables Invitro, Nature 303, 31–35.

    Google Scholar 

  2. Yanagida, T., Nakase, M., Nishiyama, K., and Oosawa, F. (1984) Direct Observation of Motion of Single F-Actin Filaments in the Presence of Myosin, Nature 307, 58–60.

    Google Scholar 

  3. Spudich, J. A., Kron, S. J., and Sheetz, M. P. (1985) Movement of Myosin-Coated Beads on Oriented Filaments Reconstituted from Purified Actin, Nature 315, 584–586.

    Google Scholar 

  4. Svoboda, K., Schmidt, C. F., Schnapp, B. J., and Block, S. M. (1993) Direct observation of kinesin stepping by optical trapping interferometry, Nature 365, 721–727.

    Google Scholar 

  5. Rief, M., Rock, R. S., Mehta, A. D., Mooseker, M. S., Cheney, R. E., and Spudich, J. A. (2000) Myosin-V stepping kinetics: A molecular model for processivity, Proc. Natl. Acad. Sci. U. S. A. 97, 9482–9486.

    Google Scholar 

  6. Schnitzer, M. J., Visscher, K., and Block, S. M. (2000) Force production by single kinesin motors, Nat. Cell. Biol. 2, 718–723.

    Google Scholar 

  7. Funatsu, T., Harada, Y., Tokunaga, M., Saito, K., and Yanagida, T. (1995) Imaging of Single Fluorescent Molecules and Individual ATP Turnovers by Single Myosin Molecules in Aqueous-Solution, Nature 374, 555–559.

    Google Scholar 

  8. Vale, R. D., Funatsu, T., Pierce, D. W., Romberg, L., Harada, Y., and Yanagida, T. (1996) Direct observation of single kinesin molecules moving along microtubules, Nature 380, 451–453.

    Google Scholar 

  9. Pierce, D. W., HomBooher, N., and Vale, R. D. (1997) Imaging individual green fluorescent proteins, Nature 388, 338–338.

    Google Scholar 

  10. Helenius, J., Brouhard, G., Kalaidzidis, Y., Diez, S., and Howard, J. (2006) The depolymerizing kinesin MCAK uses lattice diffusion to rapidly target microtubule ends, Nature 441, 115–119.

    Google Scholar 

  11. Varga, V., Helenius, J., Tanaka, K., Hyman, A. A., Tanaka, T. U., and Howard, J. (2006) Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner, Nat. Cell. Biol. 8, 957–960.

    Google Scholar 

  12. Bieling, P., Laan, L., Schek, H., Munteanu, E. L., Sandblad, L., Dogterom, M., Brunner, D., and Surrey, T. (2007) Reconstitution of a microtubule plus-end tracking system in vitro, Nature 450, 1100–1105.

    Google Scholar 

  13. Brouhard, G. J., Stear, J. H., Noetzel, T. L., Al-Bassam, J., Kinoshita, K., Harrison, S. C., Howard, J., and Hyman, A. A. (2008) XMAP215 is a processive microtubule polymerase, Cell 132, 79–88.

    Google Scholar 

  14. Fink, G., Hajdo, L., Skowronek, K. J., Reuther, C., Kasprzak, A. A., and Diez, S. (2009) The mitotic kinesin-14 Ncd drives directional microtubule-microtubule sliding, Nat. Cell. Biol. 11, 717–723.

    Google Scholar 

  15. Varga, V., Leduc, C., Bormuth, V., Diez, S., and Howard, J. (2009) Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization, Cell 138, 1174–1183.

    Google Scholar 

  16. Seitz, A., Kojima, H., Oiwa, K., Mandelkow, E. M., Song, Y. H., and Mandelkow, E. (2002) Single-molecule investigation of the interference between kinesin, tau and MAP2c, EMBO J. 21, 4896–4905.

    Google Scholar 

  17. Dixit, R., Ross, J. L., Goldman, Y. E., and Holzbaur, E. L. (2008) Differential regulation of dynein and kinesin motor proteins by tau, Science 319, 1086–1089.

    Google Scholar 

  18. Telley, I. A., Bieling, P., and Surrey, T. (2009) Obstacles on the microtubule reduce the processivity of Kinesin-1 in a minimal in vitro system and in cell extract, Biophys. J. 96, 3341–3353.

    Google Scholar 

  19. Korten, T., and Diez, S. (2008) Setting up roadblocks for kinesin-1: mechanism for the selective speed control of cargo carrying microtubules, Lab Chip 8, 1441–1447.

    Google Scholar 

  20. Axelrod, D., Burghardt, T. P., and Thompson, N. L. (1984) Total internal reflection fluorescence, Annu. Rev. Biophys. Bioeng. 13, 247–268.

    Google Scholar 

  21. Thompson, N. L., and Steele, B. L. (2007) Total internal reflection with fluorescence correlation spectroscopy, Nat. Protoc. 2, 878–890.

    Google Scholar 

  22. Gell, C., Berndt, M., Enderlein, J., and Diez, S. (2009) TIRF microscopy evanescent field calibration using tilted fluorescent microtubules, J. Microsc. 234, 38–46.

    Google Scholar 

  23. Gell, C., Brockwell, D. J., and Smith, D. A. M. (2006) Handbook of Single Molecule Fluorescence Spectroscopy, Oxford University Press, Oxford, UK.

    Google Scholar 

  24. Gelles, J., Schnapp, B. J., and Sheetz, M. P. (1988) Tracking kinesin-driven movements with nanometre-scale precision, Nature 331, 450–453.

    Google Scholar 

  25. Anderson, C. M., Georgiou, G. N., Morrison, I. E., Stevenson, G. V., and Cherry, R. J. (1992) Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C, J. Cell Sci. 101 (Pt 2), 415–425.

    Google Scholar 

  26. Hua, W., Young, E. C., Fleming, M. L., and Gelles, J. (1997) Coupling of kinesin steps to ATP hydrolysis, Nature 388, 390–393.

    Google Scholar 

  27. Yildiz, A., Forkey, J. N., McKinney, S. A., Ha, T., Goldman, Y. E., and Selvin, P. R. (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization, Science 300, 2061–2065.

    Google Scholar 

  28. Nitzsche, B., Ruhnow, F., and Diez, S. (2008) Quantum-dot-assisted characterization of microtubule rotations during cargo transport, Nature Nanotechnology 3, 552–556.

    Google Scholar 

  29. Leduc, C., Ruhnow, F., Howard, J., and Diez, S. (2007) Detection of fractional steps in cargo movement by the collective operation of kinesin-1 motors, Proc. Natl. Acad. Sci. U. S. A. 104, 10847–10852.

    Google Scholar 

  30. Rogers, K. R., Weiss, S., Crevel, I., Brophy, P. J., Geeves, M., and Cross, R. (2001) KIF1D is a fast non-processive kinesin that demonstrates novel K-loop-dependent mechanochemistry, EMBO J. 20, 5101–5113.

    Google Scholar 

  31. Meurer-Grob, P., Kasparian, J., and Wade, R. H. (2001) Microtubule structure at improved resolution, Biochemistry (Mosc). 40, 8000–8008.

    Google Scholar 

  32. Pierson, G. B., Burton, P. R., and Himes, R. H. (1978) Alterations in number of protofilaments in microtubules assembled in vitro, J. Cell Biol. 76, 223–228.

    Google Scholar 

  33. Ray, S., Meyhofer, E., Milligan, R. A., and Howard, J. (1993) Kinesin follows the microtubule’s protofilament axis, J. Cell Biol. 121, 1083–1093.

    Google Scholar 

  34. Cheezum, M. K., Walker, W. F., and Guilford, W. H. (2001) Quantitative comparison of algorithms for tracking single fluorescent particles, Biophys. J. 81, 2378–2388.

    Google Scholar 

  35. Thompson, R. E., Larson, D. R., and Webb, W. W. (2002) Precise nanometer localization analysis for individual fluorescent probes, Biophys. J. 82, 2775–2783.

    Google Scholar 

  36. Moré, J. J. (1977) The Levenberg-Marquardt Algorithm: Implementation and Theory, in Numer. Anal. (Watson, G. A., Ed.), pp 105–116, Springer Verlag.

    Google Scholar 

  37. Coleman, T. F., and Li, Y. (1994) On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds, Math. Program. 67, 189–224.

    Google Scholar 

  38. Chetverikov, D., and Verestóy, J. (1999) Feature Point Tracking for Incomplete Trajectories, Computing 62, 321–338.

    Google Scholar 

  39. Ruhnow, F., Zwicker, D., and Diez, S. (2011) Tracking single particles and elongated filaments with nanometer precision, Biophys. J. 100, 2820–2828.

    CAS  Google Scholar 

  40. Dobbs, D. A., Bergman, R. G., and Theopold, K. H. (1990) Piranha Solution Explosion, Chem. Eng. News 68, 2–2.

    Google Scholar 

  41. Erickson, C. V. (1990) Piranha Solution Explosions, Chem. Eng. News 68, 2–2.

    Google Scholar 

  42. Reuther, C., Hajdo, L., Tucker, R., Kasprzak, A. A., and Diez, S. (2006) Biotemplated nanopatterning of planar surfaces with molecular motors, Nano Lett 6, 2177–2183.

    Google Scholar 

  43. Hohng, S., and Ha, T. (2004) Near-complete suppression of quantum dot blinking in ambient conditions, J. Am. Chem. Soc. 126, 1324–1325.

    Google Scholar 

  44. Chen, Y., Vela, J., Htoon, H., Casson, J. L., Werder, D. J., Bussian, D. A., Klimov, V. I., and Hollingsworth, J. A. (2008) “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking, J. Am. Chem. Soc. 130, 5026–5027.

    Google Scholar 

  45. Mahler, B., Spinicelli, P., Buil, S., Quelin, X., Hermier, J. P., and Dubertret, B. (2008) Towards non-blinking colloidal quantum dots, Nat. Mat. 7, 659–664.

    Google Scholar 

  46. Wang, X. Y., Ren, X. F., Kahen, K., Hahn, M. A., Rajeswaran, M., Maccagnano-Zacher, S., Silcox, J., Cragg, G. E., Efros, A. L., and Krauss, T. D. (2009) Non-blinking semiconductor nanocrystals, Nature 459, 686–689.

    Google Scholar 

  47. Kerssemakers, J. W., Munteanu, E. L., Laan, L., Noetzel, T. L., Janson, M. E., and Dogterom, M. (2006) Assembly dynamics of microtubules at molecular resolution, Nature 442, 709–712.

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank all current and former members of the Howard and Diez labs for the tremendous efforts in helping to develop the described protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Diez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Korten, T., Nitzsche, B., Gell, C., Ruhnow, F., Leduc, C., Diez, S. (2011). Fluorescence Imaging of Single Kinesin Motors on Immobilized Microtubules. In: Peterman, E., Wuite, G. (eds) Single Molecule Analysis. Methods in Molecular Biology, vol 783. Humana Press. https://doi.org/10.1007/978-1-61779-282-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-282-3_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-281-6

  • Online ISBN: 978-1-61779-282-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics