Skip to main content

Single-Cell Transcript Profiling of Differentiating Embryonic Stem Cells

  • Protocol
  • First Online:
  • 1605 Accesses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Heterogeneity of stem cell populations is a well-known but poorly characterized phenomenon. Here, we demonstrate the qualitative and quantitative power of single-cell transcript analysis to characterize transcriptome dynamics in embryonic stem cells (ESC). In this chapter, we describe a method for isolation, characterization, and analysis of single-cell transcript profiles of individual human ESC that clearly identifies cellular heterogeneity within undifferentiated populations and identifies novel cell types in differentiating cultures. This analysis is presented at a level of depth and resolution not attainable by other methods. None of the insights in this study would have been possible with standard population-level transcript analysis or single-cell FACS analysis of known cell-surface markers. Only by developing robust single-cell transcript profiling techniques and applying these to established stem cell differentiation paradigms were we able to deconstruct complex populations of cells into their component parts. Single-cell analysis can systematically determine unique cellular profiles for use in cell sorting and identification, show the potential to augment standing models of cellular differentiation, and elucidate the behavior of stem cells exiting pluripotency.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gadue P., Huber T.L., Nostro M.C. et al. (2005) Germ layer induction from embryonic stem cells, Exp Hematol 33, 955–964.

    Article  PubMed  CAS  Google Scholar 

  2. Tietjen I., Rihel J.M., Cao Y. et al. (2003) Single-cell transcriptional analysis of neuronal progenitors, Neuron 38, 161–175.

    Article  PubMed  CAS  Google Scholar 

  3. Trimarchi J.M., Stadler M.B., Roska B. et al. (2007) Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling, J Comp Neurol 502, 1047–1065.

    Article  PubMed  CAS  Google Scholar 

  4. Chiang M.K., Melton D.A. (2003) Single-cell transcript analysis of pancreas development, Dev Cell 4, 383–393.

    Article  PubMed  CAS  Google Scholar 

  5. Kurimoto K., Yabuta Y., Ohinata Y. et al. (2006) An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis, Nucleic Acids Res 34, e42.

    Article  PubMed  Google Scholar 

  6. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S. et al. (1998) Embryonic stem cell lines derived from human blastocysts, Science 282, 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  7. Cerdan C., Hong S.H., Bhatia M. (2007) Formation and hematopoietic differentiation of human embryoid bodies by suspension and hanging drop cultures, Curr Protoc Stem Cell Biol Chapter 1, Unit 1D 2.

    Google Scholar 

  8. D’Amour K.A., Agulnick A.D., Eliazer S. et al. (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm, Nat Biotechnol 23, 1534–1541.

    Article  PubMed  Google Scholar 

  9. Zhang P., Li J., Tan Z. et al. (2008) Short-term BMP-4 treatment initiates mesoderm induction in human embryonic stem cells, Blood 111, 1933–1941.

    Article  PubMed  CAS  Google Scholar 

  10. Adewumi O., Aflatoonian B., Ahrlund-Richter L. et al. (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative, Nat Biotechnol 25, 803–816.

    Article  PubMed  CAS  Google Scholar 

  11. Blum B., Benvenisty N. (2007) Clonal analysis of human embryonic stem cell differentiation into teratomas, Stem Cells 25, 1924–1930.

    Article  PubMed  CAS  Google Scholar 

  12. Gertow K., Wolbank S., Rozell B. et al. (2004) Organized development from human embryonic stem cells after injection into immunodeficient mice, Stem Cells Dev 13, 421–435.

    Article  PubMed  Google Scholar 

  13. Besser D. (2004) Expression of nodal, lefty-a, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3, J Biol Chem 279, 45076–45084.

    Article  PubMed  CAS  Google Scholar 

  14. Yang L., Soonpaa M.H., Adler E.D. et al. (2008) Human cardiovascular progenitor cells develop from a KDR+  embryonic-stem-cell-derived population, Nature 453, 524–528.

    Article  PubMed  CAS  Google Scholar 

  15. Nostro M.C., Cheng X., Keller G.M. et al. (2008) Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood, Cell Stem Cell 2, 60–71.

    Article  PubMed  CAS  Google Scholar 

  16. Gibson J.D., Jakuba C.M., Boucher N. et al. (2009) Single-cell transcript analysis of human embryonic stem cells, Integr Biol (Camb) 1, 540–551.

    Article  CAS  Google Scholar 

  17. Peiffer I., Belhomme D., Barbet R. et al. (2007) Simultaneous differentiation of endothelial and trophoblastic cells derived from human embryonic stem cells, Stem Cells Dev 16, 393–402.

    Article  PubMed  CAS  Google Scholar 

  18. Boyer L.A., Lee T.I., Cole M.F. et al. (2005) Core transcriptional regulatory circuitry in human embryonic stem cells, Cell 122, 947–956.

    Article  PubMed  CAS  Google Scholar 

  19. Kim J., Chu J., Shen X. et al. (2008) An extended transcriptional network for pluripotency of embryonic stem cells, Cell 132, 1049–1061.

    Article  PubMed  CAS  Google Scholar 

  20. Kuroda T., Tada M., Kubota H. et al. (2005) Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression, Molecular and Cellular Biology 25, 2475–2485.

    Article  PubMed  CAS  Google Scholar 

  21. Card D.A.G., Hebbar P.B., Li L. et al. (2008) Oct4/Sox2-regulated miR-302 targets cyclin D1 in human embryonic stem cells, Molecular and Cellular Biology 28, 6426–6438.

    Article  PubMed  Google Scholar 

  22. Li J., Pan G., Cui K. et al. (2007) A dominant-negative form of mouse SOX2 induces trophectoderm differentiation and progressive polyploidy in mouse embryonic stem cells, J Biol Chem 282, 19481–19492.

    Article  PubMed  CAS  Google Scholar 

  23. Hyslop L., Stojkovic M., Armstrong L. et al. (2005) Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages, Stem Cells 23, 1035–1043.

    Article  PubMed  CAS  Google Scholar 

  24. Niu Z., Iyer D., Conway S.J. et al. (2008) Serum response factor orchestrates nascent sarcomerogenesis and silences the biomineralization gene program in the heart, Proc Natl Acad Sci USA 105, 17824–17829.

    Article  PubMed  CAS  Google Scholar 

  25. Izumi N., Era T., Akimaru H. et al. (2007) Dissecting the molecular hierarchy for mesendoderm differentiation through a combination of embryonic stem cell culture and RNA ­interference, Stem Cells 25, 1664–1674.

    Article  PubMed  CAS  Google Scholar 

  26. Fujikura J., Yamato E., Yonemura S. et al. (2002) Differentiation of embryonic stem cells is induced by GATA factors, Genes & Development 16, 784–789.

    Article  CAS  Google Scholar 

  27. Zhang C., Ye X., Zhang H. et al. (2007) GATA factors induce mouse embryonic stem cell differentiation toward extraembryonic endoderm, Stem Cells Dev 16, 605–613.

    Article  PubMed  CAS  Google Scholar 

  28. Xin M., Davis C.A., Molkentin J.D. et al. (2006) A threshold of GATA4 and GATA6 expression is required for cardiovascular development, Proc Natl Acad Sci USA 103, 11189–11194.

    Article  PubMed  CAS  Google Scholar 

  29. Perea-Gómez A., Shawlot W., Sasaki H. et al. (1999) HNF3beta and Lim1 interact in the visceral endoderm to regulate primitive streak formation and anterior-posterior polarity in the mouse embryo, Development 126, 4499–4511.

    PubMed  Google Scholar 

  30. Foucher I., Montesinos M.L., Volovitch M. et al. (2003) Joint regulation of the MAP1B promoter by HNF3beta/Foxa2 and Engrailed is the result of a highly conserved mechanism for direct interaction of homeoproteins and Fox transcription factors, Development 130, 1867–1876.

    Article  PubMed  CAS  Google Scholar 

  31. Coucouvanis E., Martin G.R. (1999) BMP signaling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo, Development 126, 535–546.

    PubMed  CAS  Google Scholar 

  32. Hough S.R., Clements I., Welch P.J. et al. (2006) Differentiation of mouse embryonic stem cells after RNA interference-mediated silencing of OCT4 and Nanog, Stem Cells 24, 1467–1475.

    Article  PubMed  CAS  Google Scholar 

  33. Westfall S.D., Sachdev S., Das P. et al. (2008) Identification of oxygen-sensitive transcriptional programs in human embryonic stem cells, Stem Cells Dev 17, 869–881.

    Article  PubMed  CAS  Google Scholar 

  34. Merrill B.J., Pasolli H.A., Polak L. et al. (2004) Tcf3: a transcriptional regulator of axis induction in the early embryo, Development 131, 263–274.

    Article  PubMed  CAS  Google Scholar 

  35. Tsang T.E., Kinder S.J., Tam P.P. (1999) Experimental analysis of the emergence of left-right asymmetry of the body axis in early postimplantation mouse embryos, Cell Mol Biol (Noisy-le-grand) 45, 493–503.

    CAS  Google Scholar 

  36. Matsuura R., Kogo H., Ogaeri T. et al. (2006) Crucial transcription factors in endoderm and embryonic gut development are expressed in gut-like structures from mouse ES cells, Stem Cells 24, 624–630.

    Article  PubMed  Google Scholar 

  37. Denson L.A., McClure M.H., Bogue C.W. et al. (2000) HNF3beta and GATA-4 transactivate the liver-enriched homeobox gene, Hex, Gene 246, 311–320.

    Article  PubMed  CAS  Google Scholar 

  38. Nagao K., Taniyama Y., Kietzmann T. et al. (2008) HIF-1alpha signaling upstream of NKX2.5 is required for cardiac development in Xenopus, J Biol Chem 283, 11841–11849.

    Article  PubMed  CAS  Google Scholar 

  39. Yi C.H., Terrett J.A., Li Q.Y. et al. (1999) Identification, mapping, and phylogenomic analysis of four new human members of the T-box gene family: EOMES, TBX6, TBX18, and TBX19, Genomics 55, 10–20.

    Article  PubMed  CAS  Google Scholar 

  40. Murakami A., Shen H., Ishida S. et al. (2004) SOX7 and GATA-4 are competitive activators of Fgf-3 transcription, J Biol Chem 279, 28564–28573.

    Article  PubMed  CAS  Google Scholar 

  41. Nelson T.J., Faustino R.S., Chiriac A. et al. (2008) CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells, Stem Cells 26, 1464–1473.

    Article  PubMed  CAS  Google Scholar 

  42. Sherwood R.I., Chen T.-Y.A., Melton D.A. (2009) Transcriptional dynamics of endodermal organ formation, Dev Dyn 238, 29–42.

    Article  PubMed  CAS  Google Scholar 

  43. Chickarmane V., Peterson C. (2008) A computational model for understanding stem cell, trophectoderm and endoderm lineage determination, PLoS ONE 3, e3478.

    Article  PubMed  Google Scholar 

  44. Ralston A., Rossant J. (2008) Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo, Developmental Biology 313, 614–629.

    Article  PubMed  CAS  Google Scholar 

  45. Yasuda S.-y., Tsuneyoshi N., Sumi T. et al. (2006) NANOG maintains self-renewal of primate ES cells in the absence of a feeder layer, Genes Cells 11, 1115–1123.

    Article  PubMed  CAS  Google Scholar 

  46. Strumpf D., Mao C.-A., Yamanaka Y. et al. (2005) Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst, Development 132, 2093–2102.

    Article  PubMed  CAS  Google Scholar 

  47. Lim S., Pereira L., Wong M. et al. (2008) Enforced Expression of Mixl1 During Mouse ES Cell Differentiation Suppresses Hematopoietic Mesoderm and Promotes Endoderm Formation, Stem Cells.

    Google Scholar 

  48. Babaie Y., Herwig R., Greber B. et al. (2007) Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells, Stem Cells 25, 500–510.

    Article  PubMed  CAS  Google Scholar 

  49. Singh A.M., Hamazaki T., Hankowski K.E. et al. (2007) A heterogeneous expression pattern for Nanog in embryonic stem cells, Stem Cells 25, 2534–2542.

    Article  PubMed  CAS  Google Scholar 

  50. Kobayashi M., Takada T., Takahashi K. et al. (2008) BMP4 induces primitive endoderm but not trophectoderm in monkey embryonic stem cells, Cloning Stem Cells 10, 495–502.

    Article  PubMed  CAS  Google Scholar 

  51. Degrelle S.A., Campion E., Cabau C. et al. (2005) Molecular evidence for a critical period in mural trophoblast development in bovine blastocysts, Developmental Biology 288, 448–460.

    Article  PubMed  CAS  Google Scholar 

  52. Bettiol E., Sartiani L., Chicha L. et al. (2007) Fetal bovine serum enables cardiac differentiation of human embryonic stem cells, Differentiation 75, 669–681.

    Article  PubMed  CAS  Google Scholar 

  53. Chen Y., Soto-Gutierrez A., Navarro-Alvarez N. et al. (2006) Instant hepatic differentiation of human embryonic stem cells using activin A and a deleted variant of HGF, Cell Transplant 15, 865–871.

    Article  PubMed  Google Scholar 

  54. Takada T., Nemoto K.-i., Yamashita A. et al. (2005) Efficient gene silencing and cell differentiation using siRNA in mouse and monkey ES cells, Biochemical and Biophysical Research Communications 331, 1039–1044.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark G. Carter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Gibson, J.D., Jakuba, C.M., Nelson, C.E., Carter, M.G. (2011). Single-Cell Transcript Profiling of Differentiating Embryonic Stem Cells. In: Ye, K., Jin, S. (eds) Human Embryonic and Induced Pluripotent Stem Cells. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-61779-267-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-267-0_33

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-266-3

  • Online ISBN: 978-1-61779-267-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics