Skip to main content

Use of Phospho-Site Substitutions to Analyze the Biological Relevance of Phosphorylation Events in Regulatory Networks

  • Protocol
  • First Online:
Plant Kinases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 779))

Abstract

Biological information is often transmitted by phosphorylation cascades. However, the biological relevance of specific phosphorylation events is often difficult to determine. An invaluable tool to study the effect of kinases and/or phosphatases is the use of phospho- and dephospho-mimetic substitutions in the respective target proteins. Here, we present a generally applicable procedure of how to design, set-up, and carry out phosphorylation modulation experiments and subsequent monitoring of protein activities, taking ­cyclin-dependent kinases (CDKs) as a case study. CDKs are key regulators of cell cycle progression in all eukaryotic cells. Consequently, CDKs are controlled at many levels and phosphorylation of CDKs ­themselves is used to regulate their kinase activity. We describe in detail complementation experiments of a mutant in CDKA;1, the major cell cycle kinase in Arabidopsis, with phosphorylation-site variants of CDKA;1. CDKA;1 versions were generated either by mimicking a phosphorylated amino acid by replacing the respective residue with a negatively charged amino acid, e.g., aspartate or glutamate, or by mutating it to a non-phoshorylatable amino acid, such as alanine, valine, or phenylalanine. The genetic complementation studies were accompanied by the isolation of these kinase variants from plant extract and subsequent kinase assays to determine changes in their activity levels. This work allowed us to judge the importance of ­posttranslational regulation of CDKA;1 in plants and has shown that the molecular mechanistics of CDK function are apparently conserved across the kingdoms. However, the regulatory wiring of CDKs is ­strikingly different between plants, animals, and yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan, D. O. (2007) The cell cycle: ­principles of control, New Science Press Ltd in association with Oxford University Press, London.

    Google Scholar 

  2. Iwakawa, H., Shinmyo, A., and Sekine, M. (2006) Arabidopsis CDKA;1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis. Plant J 45, 819–31.

    Article  PubMed  CAS  Google Scholar 

  3. Nowack, M. K., Grini, P. E., Jakoby, M. J., Lafos, M., Koncz, C., and Schnittger, A. (2006) A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet 38, 63–7.

    Article  PubMed  CAS  Google Scholar 

  4. Inze, D. (2007) Cell Cycle Control and Plant Development, Vol. 32, Wiley-Blackwell, Oxford.

    Book  Google Scholar 

  5. Dissmeyer, N., Nowack, M. K., Pusch, S., Stals, H., Inze, D., Grini, P. E., and Schnittger, A. (2007) T-loop phosphorylation of Arabidopsis CDKA;1 is required for its function and can be partially substituted by an aspartate residue. Plant Cell 19, 972–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Harashima, H., Shinmyo, A., and Sekine, M. (2007) Phosphorylation of threonine 161 in plant cyclin-dependent kinase A is required for cell division by activation of its associated kinase. Plant J 52, 435–48.

    Article  PubMed  CAS  Google Scholar 

  7. Kaldis, P. (2006) Cell cycle regulation, Springer, Berlin; London.

    Google Scholar 

  8. Shimotohno, A., and Umeda, M. (2007) CDK phosphorylation, in The cell cycle control and plant development; Annual plant reviews, 32 (Inze, D., Ed.), Blackwell Publ., Oxford [u.a.].

    Google Scholar 

  9. Morgan, D. O. (1997) Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13, 261–91.

    Article  PubMed  CAS  Google Scholar 

  10. Dissmeyer, N., Weimer, A. K., Pusch, S., De Schutter, K., Kamei, C. L., Nowack, M. K., Novak, B., Duan, G. L., Zhu, Y. G., De Veylder, L., and Schnittger, A. (2009) Control of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the Arabidopsis Cdk1 homolog CDKA;1. Plant Cell 21, 3641–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Dissmeyer, N., Weimer, A. K., Bergdoll, M., Novak, B., and Schnittger, A. (in preparation) The regulatory network of cell-cycle progression is fundamentally different in plants versus yeast or metazoans. Plant Signal Behav.

    Google Scholar 

  12. Bleeker, P. M., Hakvoort, H. W., Bliek, M., Souer, E., and Schat, H. (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J 45, 917–29.

    Article  PubMed  CAS  Google Scholar 

  13. Ellis, D. R., Gumaelius, L., Indriolo, E., Pickering, I. J., Banks, J. A., and Salt, D. E. (2006) A novel arsenate reductase from the arsenic hyperaccumulating fern Pteris vittata. Plant Physiol 141, 1544–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Gould, K. L., and Nurse, P. (1989) Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 342, 39–45.

    Article  PubMed  CAS  Google Scholar 

  15. Krek, W., and Nigg, E. A. (1991) Mutations of p34cdc2 phosphorylation sites induce premature mitotic events in HeLa cells: evidence for a double block to p34cdc2 kinase activation in vertebrates. Embo J 10, 3331–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Krek, W., Marks, J., Schmitz, N., Nigg, E. A., and Simanis, V. (1992) Vertebrate p34cdc2 phosphorylation site mutants: effects upon cell cycle progression in the fission yeast Schizosaccharomyces pombe. J Cell Sci 102 (Pt 1), 43–53.

    Article  PubMed  CAS  Google Scholar 

  17. Ducommun, B., Brambilla, P., Felix, M. A., Franza, B. R., Jr., Karsenti, E., and Draetta, G. (1991) cdc2 phosphorylation is required for its interaction with cyclin. Embo J 10, 3311–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Atherton-Fessler, S., Parker, L. L., Geahlen, R. L., and Piwnica-Worms, H. (1993) Mechanisms of p34cdc2 regulation. Mol Cell Biol 13, 1675–85.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci U S A 103, 1988–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Michard, E., Dreyer, I., Lacombe, B., Sentenac, H., and Thibaud, J. B. (2005) Inward rectification of the AKT2 channel abolished by voltage-dependent phosphorylation. Plant J 44, 783–97.

    Article  PubMed  CAS  Google Scholar 

  21. Kanamaru, K., Wang, R., Su, W., and Crawford, N. M. (1999) Ser-534 in the hinge 1 region of Arabidopsis nitrate reductase is conditionally required for binding of 14-3-3 proteins and in vitro inhibition. J Biol Chem 274, 4160–5.

    Article  PubMed  CAS  Google Scholar 

  22. Hass, C., Lohrmann, J., Albrecht, V., Sweere, U., Hummel, F., Yoo, S. D., Hwang, I., Zhu, T., Schafer, E., Kudla, J., and Harter, K. (2004) The response regulator 2 mediates ethylene signalling and hormone signal integration in Arabidopsis. Embo J 23, 3290–302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Leibfried, A., To, J. P., Busch, W., Stehling, S., Kehle, A., Demar, M., Kieber, J. J., and Lohmann, J. U. (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438, 1172–5.

    Article  PubMed  CAS  Google Scholar 

  24. Kirchler, T., Briesemeister, S., Singer, M., Schutze, K., Keinath, M., Kohlbacher, O., Vicente-Carbajosa, J., Teige, M., Harter, K., and Chaban, C. (2010) The role of phosphorylatable serine residues in the DNA-binding domain of Arabidopsis bZIP transcription factors. Eur J Cell Biol 89, 175–83.

    Article  PubMed  CAS  Google Scholar 

  25. Wang, X., Goshe, M. B., Soderblom, E. J., Phinney, B. S., Kuchar, J. A., Li, J., Asami, T., Yoshida, S., Huber, S. C., and Clouse, S. D. (2005) Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase. Plant Cell 17, 1685–703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wang, X., Kota, U., He, K., Blackburn, K., Li, J., Goshe, M. B., Huber, S. C., and Clouse, S. D. (2008) Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell 15, 220–35.

    Article  PubMed  CAS  Google Scholar 

  27. Kim, T. W., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J. X., Sun, Y., Burlingame, A. L., and Wang, Z. Y. (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11, 1254–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Hardtke, C. S., Gohda, K., Osterlund, M. T., Oyama, T., Okada, K., and Deng, X. W. (2000) HY5 stability and activity in Arabidopsis is regulated by phosphorylation in its COP1 binding domain. Embo J 19, 4997–5006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Otterhag, L., Gustavsson, N., Alsterfjord, M., Pical, C., Lehrach, H., Gobom, J., and Sommarin, M. (2006) Arabidopsis PDK1: identification of sites important for activity and downstream phosphorylation of S6 kinase. Biochimie 88, 11–21.

    Article  PubMed  CAS  Google Scholar 

  30. Zegzouti, H., Anthony, R. G., Jahchan, N., Bogre, L., and Christensen, S. K. (2006) Phosphorylation and activation of PINOID by the phospholipid signaling kinase 3-phosphoinositide-dependent protein kinase 1 (PDK1) in Arabidopsis. Proc Natl Acad Sci U S A 103, 6404–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sirichandra, C., Gu, D., Hu, H. C., Davanture, M., Lee, S., Djaoui, M., Valot, B., Zivy, M., Leung, J., Merlot, S., and Kwak, J. M. (2009) Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett 583, 2982–6.

    Article  PubMed  CAS  Google Scholar 

  32. Takeda, S., Gapper, C., Kaya, H., Bell, E., Kuchitsu, K., and Dolan, L. (2008) Local positive feedback regulation determines cell shape in root hair cells. Science 319, 1241–4.

    Article  PubMed  CAS  Google Scholar 

  33. Dinesh-Kumar, S. P., Tham, W. H., and Baker, B. J. (2000) Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc Natl Acad Sci U S A 97, 14789–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hildebrandt, J. D., Day, R., Farnsworth, C. L., and Feig, L. A. (1991) A mutation in the putative Mg(2+)-binding site of Gs alpha prevents its activation by receptors. Mol Cell Biol 11, 4830–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Chen, S. Y., Huff, S. Y., Lai, C. C., Der, C. J., and Powers, S. (1994) Ras-15A protein shares highly similar dominant-negative biological properties with Ras-17N and forms a stable, guanine-nucleotide resistant complex with CDC25 exchange factor. Oncogene 9, 2691–8.

    PubMed  CAS  Google Scholar 

  36. Wu, T. H., and Marinus, M. G. (1994) Dominant negative mutator mutations in the mutS gene of Escherichia coli. J Bacteriol 176, 5393–400.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Jelic, M., Soll, J., and Schleiff, E. (2003) Two Toc34 homologues with different properties. Biochemistry 42, 5906–16.

    Article  PubMed  CAS  Google Scholar 

  38. Aronsson, H., Combe, J., Patel, R., and Jarvis, P. (2006) In vivo assessment of the significance of phosphorylation of the Arabidopsis chloroplast protein import receptor, atToc33. FEBS Lett 580, 649–55.

    Article  PubMed  CAS  Google Scholar 

  39. Oreb, M., Zoryan, M., Vojta, A., Maier, U. G., Eichacker, L. A., and Schleiff, E. (2007) Phospho-mimicry mutant of atToc33 affects early development of Arabidopsis thaliana. FEBS Lett 581, 5945–51.

    Article  PubMed  CAS  Google Scholar 

  40. Anderson, J. C., Pascuzzi, P. E., Xiao, F., Sessa, G., and Martin, G. B. (2006) Host-mediated phosphorylation of type III effector AvrPto promotes Pseudomonas virulence and avirulence in tomato. Plant Cell 18, 502–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Xiao, F., Giavalisco, P., and Martin, G. B. (2007) Pseudomonas syringae type III effector AvrPtoB is phosphorylated in plant cells on serine 258, promoting its virulence activity. J Biol Chem 282, 30737–44.

    Article  PubMed  CAS  Google Scholar 

  42. Champagne, J., Laliberte-Gagne, M. E., and Leclerc, D. (2007) Phosphorylation of the termini of Cauliflower mosaic virus precapsid protein is important for productive infection. Mol Plant Microbe Interact 20, 648–58.

    Article  PubMed  CAS  Google Scholar 

  43. Citovsky, V., McLean, B. G., Zupan, J. R., and Zambryski, P. (1993) Phosphorylation of tobacco mosaic virus cell-to-cell movement protein by a developmentally regulated plant cell wall-associated protein kinase. Genes Dev 7, 904–10.

    Article  PubMed  CAS  Google Scholar 

  44. Van Leene, J., Stals, H., Eeckhout, D., Persiau, G., Van De Slijke, E., Van Isterdael, G., De Clercq, A., Bonnet, E., Laukens, K., Remmerie, N., Henderickx, K., De Vijlder, T., Abdelkrim, A., Pharazyn, A., Van Onckelen, H., Inze, D., Witters, E., and De Jaeger, G. (2007) A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana. Mol Cell Proteomics 6, 1226–38.

    Article  PubMed  CAS  Google Scholar 

  45. Nieuwland, J., Menges, M., and Murray, J. A. (2007) The plant cyclins, in Cell Cycle Control and Plant Development (Inze, D., Ed.), John Wiley & Sons Inc.

    Google Scholar 

  46. Boruc, J., Van den Daele, H., Hollunder, J., Rombauts, S., Mylle, E., Hilson, P., Inze, D., De Veylder, L., and Russinova, E. (2010) Functional modules in the Arabidopsis core cell cycle binary protein-protein interaction network. Plant Cell 22, 1264–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Van Leene, J., Hollunder, J., Eeckhout, D., Persiau, G., Van De Slijke, E., Stals, H., Van Isterdael, G., Verkest, A., Neirynck, S., Buffel, Y., De Bodt, S., Maere, S., Laukens, K., Pharazyn, A., Ferreira, P. C., Eloy, N., Renne, C., Meyer, C., Faure, J. D., Steinbrenner, J., Beynon, J., Larkin, J. C., Van de Peer, Y., Hilson, P., Kuiper, M., De Veylder, L., Van Onckelen, H., Inze, D., Witters, E., and De Jaeger, G. (2010) Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol Syst Biol 6, 397.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lorca, T., Labbe, J. C., Devault, A., Fesquet, D., Capony, J. P., Cavadore, J. C., Le Bouffant, F., and Doree, M. (1992) Dephosphorylation of cdc2 on threonine 161 is required for cdc2 kinase inactivation and normal anaphase. Embo J 11, 2381–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Bourne, Y., Watson, M. H., Hickey, M. J., Holmes, W., Rocque, W., Reed, S. I., and Tainer, J. A. (1996) Crystal structure and mutational analysis of the human CDK2 kinase complex with cell cycle-regulatory protein CksHs1. Cell 84, 863–74.

    Article  PubMed  CAS  Google Scholar 

  50. Brown, N. R., Noble, M. E., Endicott, J. A., and Johnson, L. N. (1999) The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol 1, 438–43.

    Article  PubMed  CAS  Google Scholar 

  51. DeLano, W. L. (2005), DeLano Scientific LLC, San Carlos, CA, USA.

    Google Scholar 

  52. Brizuela, L., Draetta, G., and Beach, D. (1987) p13suc1 acts in the fission yeast cell division cycle as a component of the p34cdc2 protein kinase. Embo J 6, 3507–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Arion, D., Meijer, L., Brizuela, L., and Beach, D. (1988) cdc2 is a component of the M phase-specific histone H1 kinase: evidence for identity with MPF. Cell 55, 371–8.

    Article  PubMed  CAS  Google Scholar 

  54. Azzi, L., Meijer, L., Reed, S. I., Pidikiti, R., and Tung, H. Y. (1992) Interaction between the cell-cycle-control proteins p34cdc2 and p9CKShs2. Evidence for two cooperative binding domains in p9CKShs2. Eur J Biochem 203, 353–60.

    Article  PubMed  CAS  Google Scholar 

  55. De Veylder, L., Segers, G., Glab, N., Casteels, P., Van Montagu, M., and Inze, D. (1997) The Arabidopsis Cks1At protein binds the cyclin-dependent kinases Cdc2aAt and Cdc2bAt. FEBS Lett 412, 446–52.

    Article  PubMed  Google Scholar 

  56. Stals, H., Casteels, P., Van Montagu, M., and Inze, D. (2000) Regulation of cyclin-dependent kinases in Arabidopsis thaliana. Plant Mol Biol 43, 583–93.

    Article  PubMed  CAS  Google Scholar 

  57. Landrieu, I., Casteels, P., Odaert, B., De Veylder, L., Portetelle, D., Lippens, G., Van Montagu, M., and Inze, D. (1999) Recombinant production of the p10CKS1At protein from Arabidopsis thaliana and 13C and 15N double-isotopic enrichment for NMR studies. Protein Expr Purif 16, 144–51.

    Article  PubMed  CAS  Google Scholar 

  58. Weinl, C., Marquardt, S., Kuijt, S. J., Nowack, M. K., Jakoby, M. J., Hülskamp, M., and Schnittger, A. (2005) Novel Functions of Plant Cyclin-Dependent Kinase Inhibitors, ICK1/KRP1, Can Act Non-Cell-Autonomously and Inhibit Entry into Mitosis. Plant Cell.

    Google Scholar 

  59. Koncz, C., and Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204, 383–396.

    Article  CAS  Google Scholar 

  60. Brooks, G. (2005) Cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors: detection methods and activity measurements. Methods Mol Biol 296, 291–8.

    PubMed  CAS  Google Scholar 

  61. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–5.

    Article  PubMed  CAS  Google Scholar 

  62. Harlow, E., and Lane, D. (1988) Antibodies: a laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  63. Bögre, L., Zwerger, K., Meskiene, I., Binarova, P., Csizmadia, V., Planck, C., Wagner, E., Hirt, H., and Heberle-Bors, E. (1997) The cdc2Ms Kinase Is Differently Regulated in the Cytoplasm and in the Nucleus. Plant Physiol 113, 841–852.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fantes, P., and Brooks, R. (1993) The Cell cycle: a practical approach, IRL Press at Oxford University Press, Oxford; New York.

    Google Scholar 

  65. Pagano, M. (1996) Cell cycle: materials and methods, Berlin: Springer, c1996.

    Google Scholar 

  66. Dunphy, W. G. (1997) Cell cycle control, Vol. 283, Academic Press, San Diego.

    Google Scholar 

  67. Pines, J., Jackman, M., and Simpson, K. (2001) Assays for CDK activity and DNA replication in the cell cycle. Curr Protoc Cell Biol Chapter 8, Unit 8 2.

    Google Scholar 

  68. Carter, A. N. (2001) Assays of protein kinases using exogenous substrates. Curr Protoc Mol Biol Chapter 18, Unit 18 7.

    Google Scholar 

  69. Slater, R. J. (2002) Radioisotopes in biology: a practical approach, Oxford University Press, Oxford; New York.

    Google Scholar 

  70. Ballance, P. E., Day, L. R., Morgan, J., and Association of University Radiation Protection, O. (1992) Phosphorus-32: practical radiation protection, H and H Scientific Consultants, Leeds.

    Google Scholar 

  71. Meisenhelder, J., and Bursik, S. (2007) Safe use of radioisotopes. Curr Protoc Mol Biol Appendix 1, Appendix 1F.

    Google Scholar 

  72. Karimi, M., Inze, D., and Depicker, A. (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7, 193–5.

    Article  PubMed  CAS  Google Scholar 

  73. Sambrook, J., and Russell, D. W. (2001) Molecular cloning: a laboratory manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  74. Clough, S. J., and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735–43.

    Article  PubMed  CAS  Google Scholar 

  75. Berendzen, K., Searle, I., Ravenscroft, D., Koncz, C., Batschauer, A., Coupland, G., Somssich, I. E., and Ulker, B. (2005) A rapid and versatile combined DNA/RNA extraction protocol and its application to the analysis of a novel DNA marker set polymorphic between Arabidopsis thaliana ecotypes Col-0 and Landsberg erecta. Plant Methods 1, 4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Connell-Crowley, L., and Harper, J. W. (1995) Bacterial expression and in vitro assay of cell cycle kinases, in Cell Cycle – Materials and Methods (Pagano, M., Ed.) pp 157–168, Springer, Berlin; New York.

    Google Scholar 

  77. Gordon, J. A. (1991) Use of vanadate as protein-phosphotyrosine phosphatase inhibitor. Methods Enzymol 201, 477–82.

    Article  PubMed  CAS  Google Scholar 

  78. Matejovicova, M., Mubagwa, K., and Flameng, W. (1997) Effect of vanadate on protein determination by the coomassie brilliant blue microassay procedure. Anal Biochem 245, 252–4.

    Article  PubMed  CAS  Google Scholar 

  79. Shareef, M. M., and Shetty, K. T. (1998) Effect of vanadate on different forms of Coomassie brilliant blue and protein assay. Anal Biochem 258, 143–6.

    Article  PubMed  CAS  Google Scholar 

  80. Prince, A. M., and Andrus, L. (1992) PCR: how to kill unwanted DNA. Biotechniques 12, 358–60.

    PubMed  CAS  Google Scholar 

  81. Schönthal, A. H. (2004) Measuring cyclin-dependent kinase activity. Methods Mol Biol 281, 105–24.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Annika Weimer for critical reading and helpful comments on the manuscript. Frank Sprenger and Vimal Ramachandran helped with running the first kinase assays of Drosophila Cdc2 in vitro translations and shared materials at the old Institute for Genetics of the University of Cologne. We thank Aurine Verkest, Max Bush, Lazlo Bögre, and Mihály Horváth for helpful communication and assistance on the experimental ­procedures. N.D. was a fellow of the International Max Planck Research School and funded by the Max Planck Society, work in the laboratory of A.S. is supported through an ATIP grant from the Centre National de la Recherche Scientifique (CNRS) and an ERC starting grant from the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Dissmeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dissmeyer, N., Schnittger, A. (2011). Use of Phospho-Site Substitutions to Analyze the Biological Relevance of Phosphorylation Events in Regulatory Networks. In: Dissmeyer, N., Schnittger, A. (eds) Plant Kinases. Methods in Molecular Biology, vol 779. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-61779-264-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-264-9_6

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-61779-263-2

  • Online ISBN: 978-1-61779-264-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics