Skip to main content

Imaging Individual Myosin Molecules Within Living Cells

  • Protocol
  • First Online:
Single Molecule Enzymology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 778))

Abstract

Myosins are mechano-enzymes that convert the chemical energy of ATP hydrolysis into mechanical work. They are involved in diverse biological functions including muscle contraction, cell migration, cell division, hearing, and vision. All myosins have an N-terminal globular domain, or “head” that binds actin, hydrolyses ATP, and produces force and movement. The C-terminal “tail” region is highly divergent amongst myosin types, and this part of the molecule is responsible for determining the cellular role of each myosin. Many myosins bind to cell membranes. Their membrane-binding domains vary, specifying which lipid each myosin binds to. To directly observe the movement and localisation of individual myosins within the living cell, we have developed methods to visualise single fluorescently labelled molecules, track them in space and time, and gather a sufficient number of individual observations so that we can draw statistically valid conclusions about their biochemical and biophysical behaviour. Specifically, we can use this approach to determine the affinity of the myosin for different binding partners, and the nature of the movements that the myosins undergo, whether they cluster into larger molecular complexes and so forth. Here, we describe methods to visualise individual myosins as they move around inside live mammalian cells, using myosin-10 and myosin-6 as examples for this type of approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sellers, J. R. (2000) Myosins: a diverse superfamily. Biochim. Biophys. Acta 17, 3–22.

    Article  Google Scholar 

  2. Oliver, T. S., Berg, J. S., and Cheney, R. E. (1999) Tails of unconventional myosins. Cellular and Molecular Live Sciences 56, 243–257.

    Article  CAS  Google Scholar 

  3. Peckham, M and Knight, P.J. (2009) When a predicted coiled coil is really a single alpha helix, in myosins and other proteins. Soft Matter 5, 2493–2503.

    CAS  Google Scholar 

  4. Berg, J. S., and Cheney, R. E. (2002) Myosin-X is an unconventional myosin that undergoes intrafilapodial motility. Nat. Cell Biol. 4, 246–250.

    Article  PubMed  CAS  Google Scholar 

  5. Axelrod, D. (1992) Total Internal Reflection Fluorescence. Plenum Press, New York.

    Google Scholar 

  6. Mashanov, G. I., Tacon, D., Knight, A. E., Peckham, M., and Molloy, J. E. (2003) Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy. Methods 29, 142–152.

    Article  PubMed  CAS  Google Scholar 

  7. Mashanov, G. I., Tacon, D., Peckham, M., and Molloy, J. E. (2004) The spatial and temporal dynamics of pleckstrin homology domain binding at the plasma membrane measured by imaging single molecules in live mouse myoblasts. J. Biol. Chem. 279, 15274–15280.

    Article  PubMed  CAS  Google Scholar 

  8. Yanagida, T., Ishii, Y. (2003) Stochastic processes in nano-biomachines revealed by single molecule detection BioSystems 71, 233–244

    Google Scholar 

  9. Mashanov, G. I., and Molloy, J. E. (2007) Automatic detection of single fluorophores in live cells. Biophys. J. 92, 2199–2211.

    Article  PubMed  CAS  Google Scholar 

  10. Hern, J. A., Baig, A. H., Mashanov, G. I., Birdsall, B., Corrie, J. E. T., et al. (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. PNAS 107, 2693–2698.

    Article  PubMed  CAS  Google Scholar 

  11. Friedman, L.J., Chung J., and Gelles, J. (2006) Viewing dynamic assembly of molecular complexes by multi-wavelength single-molecule fluorescence. Biophys. J. 91, 1023–1031.

    Article  PubMed  CAS  Google Scholar 

  12. Kubitscheck, U., Kuckmann, O., Kues, T., and Peters, R. (2000) Imaging and tracking of single GFP molecules in solution. Biophys. J. 78, 2170–2179.

    Article  PubMed  CAS  Google Scholar 

  13. Thompson, R.E., Larson, D.R., and Webb, W. W. (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783.

    Article  PubMed  CAS  Google Scholar 

  14. Pierce, D. W., Hom-Booher N., Vale R. D. (1997) Imaging individual green fluorescent proteins. Nature 388, 338.

    Article  PubMed  CAS  Google Scholar 

  15. Sako, Y., Minoghchi, S., and Yanagida, T. (2000) Single-molecule imaging of EGFR signalling on the surface of living cells. Nat. Cell Biol. 2, 168–172.

    Article  PubMed  CAS  Google Scholar 

  16. Mashanov, G. I., Nenasheva, T. A., and Molloy, J. E. (2006) Cell biochemistry studied by single-molecule imaging. Biochem. Soc. Trans. 34, 983–988.

    Article  PubMed  CAS  Google Scholar 

  17. Saxton, M. J. (1997) Single-Particle Tracking: The Distribution of Diffusion Coefficients. Biophys. J. 72, 1744–1753.

    Article  PubMed  CAS  Google Scholar 

  18. Douglass, A. D., and Vale, R. D. (2005) Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signalling molecules in T-cells. Cell 121, 937–950.

    Article  PubMed  CAS  Google Scholar 

  19. Belyantseva, I. A., Boger, E.T., Naz, S., Frolenkov, G. I., Sellers, J, R, Ahmed, Z,M, et al. (2005) Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat. Cell Biol. 7, 148–157.

    Google Scholar 

  20. Mashanov, G. I., Nobles, M., Harmer, S. C., Molloy, J. E., and Tinker, A. (2010) Direct observation of individual KCNQ1 potassium channels reveals their distinctive diffusive behavior. J. Biol. Chem. 285, 3664–3675.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Tom Cater and Laura Knipe (National Institute for Medical Research, London, UK) for cell culture support. T.A. Nenasheva was supported by Physiological Society (London) junior fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory I. Mashanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nenasheva, T.A., Mashanov, G.I., Peckham, M., Molloy, J.E. (2011). Imaging Individual Myosin Molecules Within Living Cells. In: Mashanov, G., Batters, C. (eds) Single Molecule Enzymology. Methods in Molecular Biology, vol 778. Humana Press. https://doi.org/10.1007/978-1-61779-261-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-261-8_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-260-1

  • Online ISBN: 978-1-61779-261-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics