Skip to main content

Using Optical Tweezers to Study the Fine Details of Myosin ATPase Mechanochemical Cycle

  • Protocol
  • First Online:
Single Molecule Enzymology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 778))

Abstract

Optical tweezers offer the capability to directly observe nanometre displacements and apply piconewton forces to single proteins. This method has been applied to the study of many different biological systems. Optical tweezers have proven to be particularly useful in studying the fine details of the mechanisms of molecular motor proteins, and how their movement is coordinated with ATPase activity. This includes actin, microtubule, and also DNA- and RNA-based motor systems. Here, we provide the information necessary to reproduce the “three-bead geometry” widely applied to the study of actomyosin interactions, the “paradigm system” for motors that only interact intermittently with their filament substrate, and discuss how single-molecule interactions can be detected, calibrated and analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E., and Chu, S. (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290.

    Article  PubMed  CAS  Google Scholar 

  2. Ashkin, A. (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582.

    Article  PubMed  CAS  Google Scholar 

  3. Ashkin, A. (1997) Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. USA 94, 4853–4860.

    Article  PubMed  CAS  Google Scholar 

  4. Veigel, C., and Schmidt, C. F. (2011) Moving into the cell: Single molecule studies of molecular motors in complex environments. Nature Review Mol. Cell Biol. 12(3), 163–176.

    Article  PubMed  CAS  Google Scholar 

  5. Veigel, C., Coluccio, L. M., Jontes, J. D., Sparrow, J. C., Milligan, R. A., and Molloy, J. E. (1999) The motor protein myosin-I produces its working stroke in two steps. Nature 398, 530–533.

    Article  PubMed  CAS  Google Scholar 

  6. Veigel, C., Wang, F., Bartoo, M. L., Sellers, J. R., and Molloy, J. E. (2002) The gated gait of the processive molecular motor, myosin V. Nat. Cell Biol. 4, 59–65.

    Article  PubMed  CAS  Google Scholar 

  7. Veigel, C., Molloy, J. E., Schmitz, S., and Kendrick-Jones, J. (2003) Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nat. Cell Biol. 5, 980–986.

    Article  PubMed  CAS  Google Scholar 

  8. Veigel, C., Schmitz, S., Wang, F., and Sellers, J. R. (2005) Load-dependent kinetics of myosin-V can explain its high processivity. Nat. Cell Biol. 7, 861–869.

    Article  PubMed  CAS  Google Scholar 

  9. Sellers, J. R., and Veigel, C. (2010) Direct observation of the myosin-Va power stroke and its reversal. Nat. Struct. Mol. Biol. 17, 590–595.

    Article  PubMed  CAS  Google Scholar 

  10. Ghislain, L. P., and Webb, W. W. (1993) Scanning force microscope based on an optical trap. Opt. Lett. 18, 1678–1680.

    Article  PubMed  CAS  Google Scholar 

  11. Finer, J. T., Simmons, R. M., and Spudich, J. A. (1994) Single myosin molecule mechanics-piconewton forces and nanometer steps. Nature 368, 113–119.

    Article  PubMed  CAS  Google Scholar 

  12. Visscher, K., Gross, S. P., and Block, S. M. (1996) Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J. Sel. Top. Quantum Electron. 2, 1066–1076.

    Article  CAS  Google Scholar 

  13. Veigel, C., Bartoo, M. L., White, D. C. S., Sparrow, J. C., and Molloy, J. E. (1998) The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer. Biophys. J. 75, 1424–1438.

    Article  PubMed  CAS  Google Scholar 

  14. Pardee, J. D., and Spudich, J. A. (1982) Purification of muscle actin. Methods Enzymol. 85, 164–181.

    Google Scholar 

  15. Kron, S. J., and Spudich, J. A. (1986) Fluorescent actin-filaments move on myosin fixed to a glass surface. Proc. Natl. Acad. Sci. USA 83, 6272–6276.

    Article  PubMed  CAS  Google Scholar 

  16. Kishino, A., and Yanagida, T. (1988) Force measurements by micromanioulation of a single actin filament by glass needles. Nature 334, 74–76.

    Article  PubMed  CAS  Google Scholar 

  17. Kron, S. J., Toyoshima, Y. Y., Uyeda, T. Q. P., and Spudich, J. A. (1991) Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol. 196, 399–416.

    Article  PubMed  CAS  Google Scholar 

  18. Svoboda, K., and Block, S. M. (1994) Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285.

    Article  PubMed  CAS  Google Scholar 

  19. Molloy, J. E., and Padgett, M. J. (2002) Lights, action: optical tweezers. Contemp. Phys. 43, 241–258.

    Article  CAS  Google Scholar 

  20. Molloy, J. E., Burns, J. E., Kendrick-Jones, J., Tregear, R. T., and White, D. C. S. (1995) Movement and force produced by a single myosin head. Nature 378, 209–212.

    Article  PubMed  CAS  Google Scholar 

  21. Steffen, W., Smith, D., Simmons, R., and Sleep, J. (2001) Mapping the actin filament with myosin. Proc. Natl. Acad. Sci. USA 98, 14949–14954.

    Article  PubMed  CAS  Google Scholar 

  22. Cremo, C. R., and Geeves, M. A. (1998) Interaction of actin and ADP with the head domain of smooth muscle myosin: Implications for strain-dependent ADP release in smooth muscle. Biochemistry 37, 1969–1978.

    Article  PubMed  CAS  Google Scholar 

  23. Wells, J. A., and Yount, R. G. (1982) Chemical modification of myosin by active-site trapping of metal-nucleotides with thiol crosslinking reagents. Methods Enzymol. 85, 93–116.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Batters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Batters, C., Veigel, C. (2011). Using Optical Tweezers to Study the Fine Details of Myosin ATPase Mechanochemical Cycle. In: Mashanov, G., Batters, C. (eds) Single Molecule Enzymology. Methods in Molecular Biology, vol 778. Humana Press. https://doi.org/10.1007/978-1-61779-261-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-261-8_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-260-1

  • Online ISBN: 978-1-61779-261-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics