Microsecond Resolution of Single-Molecule Rotation Catalyzed by Molecular Motors

  • Tassilo Hornung
  • James Martin
  • David Spetzler
  • Robert Ishmukhametov
  • Wayne D. FraschEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 778)


Single-molecule measurements of rotation catalyzed by the F1-ATPase or the FoF1 ATP synthase have provided new insights into the molecular mechanisms of the F1 and Fo molecular motors. We recently developed a method to record ATPase-driven rotation of F1 or FoF1 in a manner that solves several technical limitations of earlier approaches that were significantly hampered by time and angular resolution, and restricted the duration of data collection. With our approach it is possible to collect data for hours and obtain statistically significant quantities of data on each molecule examined with a time resolution of up to 5 μs at unprecedented signal-to-noise.

Key words

F1-ATPase FoF1 ATP synthase Nanodiscs Gold nanorods Plasmon resonance Molecular motors Dark field microscopy Single molecule 



This work was supported by grants from National Institutes of Health (GM50202), DARPA, and AFOSR (FA9550-05-1-0424) to W.D.F.


  1. 1.
    Stock, D., Leslie, A. G., and Walker, J. E. (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286, 1700–1705.PubMedCrossRefGoogle Scholar
  2. 2.
    Jiang, W. P., Hermolin, J., and Fillingame, R. H. (2001) The preferred stoichiometry of c subunits in the rotary motor sector of Escherichia coli ATP synthase is 10. Proc. Nat. Acad. Sci. USA 98, 4966–4971.CrossRefGoogle Scholar
  3. 3.
    Börsch, M., Diez, M., Zimmermann, B., Reuter, R., and Gräber, P. (2002) Stepwise rotation of the gamma-subunit of EFoF1-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transfer. FEBS Lett. 527, 147–152.PubMedCrossRefGoogle Scholar
  4. 4.
    Boyer, P. D. (1997) The ATP synthase-a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749.PubMedCrossRefGoogle Scholar
  5. 5.
    Sabbert, D., Engelbrecht, S., and Junge, W. (1996) Intersubunit rotation in active F-ATPase. Nature 381, 623–625.PubMedCrossRefGoogle Scholar
  6. 6.
    Spetzler, D., York, J., Daniel, D., Fromme, R., Lowry, D., and Frasch, W. (2006) Microsecond Time Scale Rotation Measurements of Single F1-ATPase Molecules. Biochemistry 45, 3117–3124.PubMedCrossRefGoogle Scholar
  7. 7.
    Noji, H., Hasler, K., Junge, W., Kinosita, K., Jr., Yoshida, M., and Engelbrecht, S. (1999) Rotation of Escherichia coli F1-ATPase. Biochem. Biophys. Res. Commun. 260, 597–599.PubMedCrossRefGoogle Scholar
  8. 8.
    Hornung, T., Ishmukhametov, R., Spetzler, D., Martin, J., and Frasch, W. D. (2008) Determination of torque generation from the power stroke of Escherichia coli F1-ATPase. Biochim. Biophys. Acta. 1777, 579–582.PubMedCrossRefGoogle Scholar
  9. 9.
    Moskovits, M. (1985) Surface-Enhanced Spectroscopy. Rev. Mod. Phys. 57, 783–826.CrossRefGoogle Scholar
  10. 10.
    Sönnichsen, C., and Alivisatos, A. P. (2005) Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Lett. 5, 301–304.PubMedCrossRefGoogle Scholar
  11. 11.
    Ishmukhametov, R., Hornung, T., Spetzler, D. and Frasch, W. D. (2010) Direct Observation of Stepped proteolipid ring rotation in E. coli FoF1 ATP Synthase. EMBO J. 29, 3911–3923.Google Scholar
  12. 12.
    York, J., Spetzler, D., Hornung, T., Ishmukha-metov, R., Martin, J., and Frasch, W. D. (2007) Abundance of Escherichia coli F1-ATPase molecules observed to rotate via single-molecule microscopy with gold nanorod probes. J. Bioenerg. Biomembr. 39, 435–439.PubMedCrossRefGoogle Scholar
  13. 13.
    Greene, M. D. and Frasch, W. D. (2003) Interactions among gamma R268, gamma Q269, and the beta subunit catch loop of Escherichia coli F1-ATPase are important for catalytic activity. J. Biol. Chem. 278, 51594–51598.PubMedCrossRefGoogle Scholar
  14. 14.
    Klionsky, D. J., Brusilow, W. S., and Simoni, R. D. (1984) In vivo evidence for the role of the epsilon subunit as an inhibitor of the proton-translocating ATPase of Escherichia coli. J. Bacteriol. 160, 1055–1060.PubMedGoogle Scholar
  15. 15.
    Jana, N. R., Gearheart, L., and Murphy, C. J. (2001) Wet Chemical Synthesis of high aspect ratio cylindrical gold nanorods. Phys. Chem. 105, 4065–4067.Google Scholar
  16. 16.
    Spetzler, D., Ishmukhametov, R., Hornung, T., Day, L. J., Martin, J., and Frasch, W. D. (2009) Single molecule measurements of F1-ATPase reveal an interdependence between the power stroke and the dwell duration. Biochemistry 48, 7979–7985.PubMedCrossRefGoogle Scholar
  17. 17.
    Yasuda, R., Noji, H., Yoshida, M., Kinosita, K., and Itoh, H. (2001) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904.PubMedCrossRefGoogle Scholar
  18. 18.
    Bayburt, T. H., Leitz, A. J., Xie, G., Oprian, D. D., and Sligar, S. G. (2007) Transducin ­activation by nanoscale lipid bilayers containing one and two rhodopsins. J. Biol. Chem. 282, 14875–14881.PubMedCrossRefGoogle Scholar
  19. 19.
    Denisov, I. G., Grinkova, Y. V., Lazarides, A. A., and Sligar, S. G. (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J. Am. Chem. Soc. 126, 3477–3487.PubMedCrossRefGoogle Scholar
  20. 20.
    Raschke, G., Kowarik, S., Franzl, T., Sönnichsen, C., Klar, T. A., Feldmann, J., Nichtl, A., and Kurzinger, K. (2003) Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3, 935–938.CrossRefGoogle Scholar
  21. 21.
    Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997) Direct observation of the rotation of F1-ATPase. Nature 386, 299–302.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Tassilo Hornung
    • 1
  • James Martin
    • 1
  • David Spetzler
    • 1
  • Robert Ishmukhametov
    • 1
  • Wayne D. Frasch
    • 1
    Email author
  1. 1.Faculty of Biomedicine and Biotechnology, School of Life SciencesArizona State UniversityTempeUSA

Personalised recommendations