Assembly of Recombinant Nucleosomes on Nanofabricated DNA Curtains for Single-Molecule Imaging

  • Ja Yil Lee
  • Eric C. GreeneEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 778)


Eukaryotic chromosomes are highly packed into chromatin, the basic unit of which is the nucleosome. The presence of nucleosomes and the resulting organization of the genome into higher-order chromatin structures has profound consequences for virtually all aspects of DNA metabolism, including DNA transcription, repair, and chromosome segregation. We have developed novel approaches for nanofabricating “DNA curtains” for high-throughput single-molecule imaging, and we have begun adapting these new research tools in an effort to begin studying chromatin biology at the single-molecule level. In this protocol, we describe procedures for assembly and real-time single-molecule visualization of DNA curtains bound by reconstituted nucleosomes made from recombinant histones.

Key words

DNA curtain TIRF microscopy Lipid bilayer Nanofabrication Nucleosomes Chromatin 



We thank the many members of the Greene laboratory who have worked on developing the DNA curtain experimental platform, and we extend special thanks to Mari-Liis Visnapuu for establishing procedures for nucleosome purification and assembly. The Greene laboratory is supported by the Howard Hughes Medical Institute, the National Institutes of Health, and the National Science Foundation. J. Y. Lee was supported in part by the Korea Research Foundation Grant funded by the Korean Government (KRF-2008-357-C00048). We apologize to any colleagues whose work we were not able to cite due to length limitations.


  1. 1.
    Widom, J. (1998) Structure, dynamics, and function of chromatin in vitro. Annu. Rev. Bioph. Biom. 27, 285–327.CrossRefGoogle Scholar
  2. 2.
    Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 angstrom resolution. Nature 389, 251–260.PubMedCrossRefGoogle Scholar
  3. 3.
    Rando, O. J., and Chang, H. Y. (2009) Genome-Wide Views of Chromatin Structure. Annu. Rev. Biochem. 78, 245–271.PubMedCrossRefGoogle Scholar
  4. 4.
    Rando, O. J., and Ahmad, K. (2007) Rules and regulation in the primary structure of chromatin. Curr. Opin. Cell Biol. 19, 250–256.PubMedCrossRefGoogle Scholar
  5. 5.
    Hager, G. L., McNally, J. G., and Misteli, T. (2009) Transcription Dynamics. Mol. Cell 35, 741–753.PubMedCrossRefGoogle Scholar
  6. 6.
    Hodges, C., Bintu, L., Lubkowska, L., Kashlev, M., and Bustamante, C. (2009) Nucleosomal Fluctuations Govern the Transcription Dynamics of RNA Polymerase II. Science 325, 626–628.PubMedCrossRefGoogle Scholar
  7. 7.
    Studitsky, V. M., Clark, D. J., and Felsenfeld, G. (1995) Overcoming a Nucleosomal Barrier to Transcription. Cell 83, 19–27.PubMedCrossRefGoogle Scholar
  8. 8.
    Groth, A., Rocha, W., Verreault, A., and Almouzni, G. (2007) Chromatin challenges during DNA replication and repair. Cell 128, 721–733.PubMedCrossRefGoogle Scholar
  9. 9.
    Graneli, A., Yeykal, C. C., Prasad, T. K., and Greene, E. C. (2006) Organized arrays of individual DIVA molecules tethered to supported lipid bilayers. Langmuir 22, 292–299.PubMedCrossRefGoogle Scholar
  10. 10.
    Visnapuu, M. L., Fazio, T., Wind, S., and Greene, E. C. (2008) Parallel arrays of geometric nanowells for assembling curtains of DNA with controlled lateral dispersion. Langmuir 24, 11293–11299.PubMedCrossRefGoogle Scholar
  11. 11.
    Fazio, T., Visnapuu, M. L., Wind, S., and Greene, E. C. (2008) DNA curtains and nanoscale curtain rods: High-throughput tools for single molecule imaging. Langmuir 24, 10524–10531.PubMedCrossRefGoogle Scholar
  12. 12.
    Greene, E. C., Wind, S., Fazio, T., Gorman, J., and Visnapuu, M. L. (2010) DNA Curtains for High-Throughput Single-Molecule Optical Imaging, Methods in Enzymology, Vol 472: Single Molecule Tools, Pt A: Fluorescence Based Approaches 472, 293–315.Google Scholar
  13. 13.
    Finkelstein, I. J., and Greene, E. C. (in press) Supported lipid-bilayers and DNA curtains for high-throughput single molecule studies. Methods in Molecular Biology.Google Scholar
  14. 14.
    Gorman, J., Fazio, T., Wang, F., Wind, S., and Greene, E. C. (2010) Nanofabricated Racks of Aligned and Anchored DNA Substrates for Single-Molecule Imaging. Langmuir 26, 1372–1379.PubMedCrossRefGoogle Scholar
  15. 15.
    Prasad, T. K., Robertson, R. B., Visnapuu, M. L., Chi, P., Sung, P., and Greene, E. C. (2007) A DNA-translocating Snf2 molecular motor: Saccharomyces cerevisiae Rdh5,4 displays processive translocation and extrudes DNA loops. J. Mol. Biol. 369, 940–953.PubMedCrossRefGoogle Scholar
  16. 16.
    Robertson, R. B., Moses, D. N., Kwon, Y., Chan, P., Zhao, W. X., Chi, P., Klein, H., Sung, P., and Greene, E. C. (2009) Visualizing the Disassembly of S. cerevisiae Rad51 Nucleoprotein Filaments. J. Mol. Biol. 388, 703–720.PubMedCrossRefGoogle Scholar
  17. 17.
    Visnapuu, M. L., and Greene, E. C. (2009) Single-molecule imaging of DNA curtains reveals intrinsic energy landscapes for nucleosome deposition. Nat. Struct. Mol. Biol. 16, 1056–U1075.PubMedCrossRefGoogle Scholar
  18. 18.
    Smith, A. M., and Nie, S. (2010) Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering. Acc. Chem. Res. 43, 190–200.PubMedCrossRefGoogle Scholar
  19. 19.
    Segal, E., Fondufe-Mittendorf, Y., Chen, L. Y., Thastrom, A., Field, Y., Moore, I. K., Wang, J. P. Z., and Widom, J. (2006) A genomic code for nucleosome positioning. Nature 442, 772–778.PubMedCrossRefGoogle Scholar
  20. 20.
    Kaplan, N., Moore, I. K., Fondufe-Mittendorf, Y., Gossett, A. J., Tillo, D., Field, Y., LeProust, E. M., Hughes, T. R., Lieb, J. D., Widom, J., and Segal, E. (2009) The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458, 362–U129.PubMedCrossRefGoogle Scholar
  21. 21.
    Field, Y., Kaplan, N., Fondufe-Mittendorf, Y., Moore, I. K., Sharon, E., Lubling, Y., Widom, J., and Segal, E. (2008) Distinct Modes of Regulation by Chromatin Encoded through Nucleosome Positioning Signals. Plos Comput. Biol. 4, 25.CrossRefGoogle Scholar
  22. 22.
    Tillo, D., and Hughes, T. R. (2009) G  +  C content dominates intrinsic nucleosome occupancy. Bmc Bioinformatics 10, 442.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew YorkUSA

Personalised recommendations