Skip to main content

Quantification of Asymmetric Microtubule Nucleation at Subcellular Structures

  • Protocol
  • First Online:
Microtubule Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 777))

Abstract

Cell polarization is important for multiple physiological processes. In polarized cells, microtubules (MTs) are organized into a spatially polarized array. Generally, in nondifferentiated cells, it is assumed that MTs are symmetrically nucleated exclusively from centrosome [microtubule organizing center (MTOC)] and then reorganized into the asymmetric array. We have recently identified the Golgi complex as an additional MTOC that asymmetrically nucleates MTs toward one side of the cell. Methods used for alternative MTOC identification include microtubule regrowth after complete drug-induced depolymerization and tracking of growing microtubules using fluorescently labeled MT +TIP binding proteins in living cells. These approaches can be used for quantification of MT nucleation sites at diverse subcellular structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salaycik, K. J., Fagerstrom, C. J., Murthy, K., Tulu, U. S., and Wadsworth, P. (2005) Quantification of microtubule nucleation, growth and dynamics in wound-edge cells, J Cell Sci 118, 4113–4122.

    Article  PubMed  CAS  Google Scholar 

  2. Bergen, L. G., Kuriyama, R., and Borisy, G. G. (1980) Polarity of microtubules nucleated by centrosomes and chromosomes of Chinese hamster ovary cells in vitro, J. Cell Biol. 84, 151–159.

    Article  PubMed  CAS  Google Scholar 

  3. Kirschner, M. and Mitchison, T. (1986) Beyond self-assembly: from microtubules to morphogenesis, Cell 45, 329–342.

    Article  PubMed  CAS  Google Scholar 

  4. Etienne-Manneville, S. and Hall, A. (2003) Cdc42 regulates GSK-3[beta] and adenomatous polyposis coli to control cell polarity, Nature 421, 753–756.

    Article  PubMed  CAS  Google Scholar 

  5. Keating, T. J., Peloquin, J. G., Rodionov, V. I., Momcilovic, D., and Borisy, G. G. (1997) Microtubule release from the centrosome, Proceedings of the National Academy of Sciences of the United States of America 94, 5078–5083.

    Article  PubMed  CAS  Google Scholar 

  6. Ahmad, F. J. and Baas, P. W. (1995) Microtubules released from the neuronal centrosome are transported into the axon, J Cell Sci 108, 2761–2769.

    PubMed  CAS  Google Scholar 

  7. Khodjakov, A., Copenagle, L., Gordon, M. B., Compton, D. A., and Kapoor, T. M. (2003) Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis, The Journal of Cell Biology 160, 671–683.

    Article  PubMed  CAS  Google Scholar 

  8. Bugnard, E., Zaal, K. J., and Ralston, E. (2005) Reorganization of microtubule nucleation during muscle differentiation, Cell Motil Cytoskeleton 60, 1–13.

    Article  PubMed  Google Scholar 

  9. Malikov, V., Kashina, A., and Rodionov, V. (2004) Cytoplasmic Dynein Nucleates Microtubules to Organize Them into Radial Arrays In Vivo, Mol. Biol. Cell 15, 2742–2749.

    Article  PubMed  CAS  Google Scholar 

  10. Komarova, Y. A., Vorobjev, I. A., and Borisy, G. G. (2002) Life cycle of MTs: persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary, J Cell Sci 115, 3527–3539.

    PubMed  CAS  Google Scholar 

  11. Piehl, M., Tulu, U. S., Wadsworth, P., and Cassimeris, L. (2004) Centrosome maturation: Measurement of microtubule nucleation throughout the cell cycle by using GFP-tagged EB1, PNAS 101, 1584–1588.

    Article  PubMed  CAS  Google Scholar 

  12. Efimov, A., Kharitonov, A., Efimova, N., Loncarek, J., Miller, P. M., Andreyeva, N., Gleeson, P., Galjart, N., Maia, A. R., McLeod, I. X., Yates, J. R., Maiato, H., Khodjakov, A., Akhmanova, A., and Kaverina, I. (2007) Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network, Dev Cell 12, 917–930.

    Article  PubMed  CAS  Google Scholar 

  13. Zhai, Y. and Borisy, G. G. (1994) Quantitative determination of the proportion of microtubule polymer present during the mitosisinterphase transition, J Cell Sci 107, 881–890.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhu, X., Kaverina, I. (2011). Quantification of Asymmetric Microtubule Nucleation at Subcellular Structures. In: Straube, A. (eds) Microtubule Dynamics. Methods in Molecular Biology, vol 777. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-252-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-252-6_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-251-9

  • Online ISBN: 978-1-61779-252-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics