Skip to main content

Photoactivatable-GFP-α-Tubulin as a Tool to Study Microtubule Plus-End Turnover in Living Human Cells

  • Protocol
  • First Online:
Microtubule Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 777))

Abstract

The development of photactivatable (PA) variants of Green fluorescent protein (GFP) has allowed the dynamics of spatially restricted protein pools within living cells to be determined. Over the last 5 years, experiments utilizing PA-GFP fused to α-tubulin have provided important insights into the mechanisms that control microtubule dynamics in living cells. In this chapter, we describe the methodology required to generate stable cell lines expressing photoactivatable-GFP-α-tubulin and to derive quantitative measurements of tubulin turnover at microtubules plus-ends in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchison, T. & Kirschner, M. (1984) Dynamic instability of microtubule growth. Nature 312:237–242.

    Article  PubMed  CAS  Google Scholar 

  2. Kueh HY, Mitchison TJ. (2009) Stuctural plasticity in actin and tubulin polymer dynamics. Science. 325.5943:960–3.

    Google Scholar 

  3. Brust-Mascher I, et al (2009) Kinesin-5–dependent Poleward Flux and Spindle Length Control in Drosophila Embryo Mitosis Molecular Biology of the Cell Vol. 20, 1749–1762.

    Google Scholar 

  4. Maddox P, et al (2002) Poleward microtubule flux is a major component of spindle dynamics and anaphase a in mitotic Drosophila embryos. Curr Biol. 12(19):1670–4.

    Article  PubMed  CAS  Google Scholar 

  5. Brust-Mascher I, Scholey JM. (2002) Microtubule flux and sliding in mitotic spindles of Drosophila embryos. Mol Biol Cell. 3967–75.

    Google Scholar 

  6. Buster DW, Zhang D, Sharp DJ. (2007) Poleward tubulin flux in spindles: regulation and function in mitotic cells. Mol Biol Cell. 18(8):3094–104.

    Article  PubMed  CAS  Google Scholar 

  7. Matos I, et al (2009) Synchronizing chromosome segregation by flux-dependent force equalization at kinetochores. J Cell Biol. 186(1):11–26.

    Article  PubMed  CAS  Google Scholar 

  8. Uteng M, et al (2008) Poleward transport of Eg5 by dynein-dynactin in Xenopus laevis egg extract spindles. J Cell Biol. 182(4):715–26.

    Article  PubMed  CAS  Google Scholar 

  9. Mitchison TJ. (2005) Mechanism and function of poleward flux in Xenopus extract meiotic spindles. Philos Trans R Soc Lond B Biol Sci. 360(1455):623–9.

    Article  PubMed  CAS  Google Scholar 

  10. Miyamoto DT, et al (2004) The kinesin Eg5 drives poleward microtubule flux in Xenopus laevis egg extract spindles. J Cell Biol. 167(5):813–8.

    Article  PubMed  CAS  Google Scholar 

  11. Shirasu-Hiza M, et al (2004) Eg5 causes elongation of meiotic spindles when flux-associated microtubule depolymerization is blocked. Curr Biol. 14(21):1941–5.

    Article  PubMed  CAS  Google Scholar 

  12. Mitchison TJ. (1989) Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J Cell Biol. 109(2):637–52.

    Article  PubMed  CAS  Google Scholar 

  13. Vallotton P, et al (2003) Recovery, visualization, and analysis of actin and tubulin polymer flow in live cells: a fluorescent speckle microscopy study. Biophys J. 85(2):1289–306.

    Article  PubMed  CAS  Google Scholar 

  14. G.H. Patterson, J. Lippincott-Schwartz (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science. 297:1873–1877.

    Article  PubMed  CAS  Google Scholar 

  15. Zhai, Y., Kronebusch, P.J. & Borisy, G.G. (1995) Kinetochore microtubule dynamics and the metaphase-anaphase transition. J Cell Biol. 131:721–734.

    Article  PubMed  CAS  Google Scholar 

  16. DeLuca, J.G. et al. (2006) Kinetochore microtubule dynamics and attachment stability are regulated by Hec1. Cell. 127:969–982.

    Article  PubMed  CAS  Google Scholar 

  17. Ganem, N.J., Upton, K. & Compton, D.A. (2005) Efficient mitosis in human cells lacking poleward microtubule flux. Curr Biol. 15:1827–1832.

    Article  PubMed  CAS  Google Scholar 

  18. Cimini D, Wan X, Hirel CB, Salmon ED. (2006) Aurora kinase promotes turnover of kinetochore microtubules to reduce chromosome segregation errors. Curr Biol. 16(17):1711–8.

    Article  PubMed  CAS  Google Scholar 

  19. Cameron LA, et al. (2006) Kinesin 5-independent poleward flux of kinetochore microtubules in PtK1 cells. J Cell Biol.173(2):173–9.

    Article  PubMed  CAS  Google Scholar 

  20. Amaro AC, et al (2010) Molecular control of kinetochore-microtubule dynamics and chromosome oscillations Nat Cell Biol. 12(4): 319–29.

    CAS  Google Scholar 

  21. Maffini S, et al (2009) Motor-independent targeting of CLASPs to kinetochores by CENP-E promotes microtubule turnover and poleward flux. Current Biology 19(18):1566–72.

    Article  PubMed  CAS  Google Scholar 

  22. Rizk RS, et al (2009) MCAK and paclitaxel have differential effects on spindle microtubule organization and dynamics. Mol Biol Cell. 20(6):1639–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catarina P. Samora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Samora, C.P., McAinsh, A.D. (2011). Photoactivatable-GFP-α-Tubulin as a Tool to Study Microtubule Plus-End Turnover in Living Human Cells. In: Straube, A. (eds) Microtubule Dynamics. Methods in Molecular Biology, vol 777. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-252-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-252-6_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-251-9

  • Online ISBN: 978-1-61779-252-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics