Advertisement

Cryo-electron Tomography of Microtubules Assembled In Vitro from Purified Components

  • Frédéric M. Coquelle
  • Sophie Blestel
  • Claire Heichette
  • Isabelle Arnal
  • Charles Kervrann
  • Denis Chrétien
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 777)

Abstract

Cryo-electron tomography of vitrified specimens allows visualization of thin biological samples in three-dimensions. This method can be applied to study the interaction of proteins that show disorder and/or bind in a nonregular fashion to microtubules. Here, we describe the protocols we use to observe microtubules assembled in vitro in the presence of XMAP215, a large and flexible protein that binds to discrete sites on the microtubule lattice. Gold particles are added to the mix before vitrification to facilitate image acquisition in low-dose mode and their subsequent alignment before tomographic reconstruction. Three-dimensional reconstructions are performed using the IMOD software, processed with ImageJ and visualized in UCSF Chimera. Extraction of features of interest is performed using a patch-based algorithm (CryoSeg) developed in the laboratory. All the software used in this procedure is freely available or can be obtained on request, and run on most operating systems.

Key words

Microtubule Tubulin Microtubule-associated proteins XMAP215 Cryo-electron tomography Fiducial markers Three-dimensional reconstruction Segmentation 

Notes

Acknowledgments

This work was supported by grants from the French National Agency for Research (ANR PCV06_142769 and PCV07_190830) and from the Federative Research Institute of Rennes IFR140 Functional genomics, Agronomy and Health.

References

  1. 1.
    Li H, DeRosier DJ, Nicholson WV, et al (2002) Microtubule structure at 8 Å resolution. Structure (Camb) 10: 1317–1328.CrossRefGoogle Scholar
  2. 2.
    Sindelar C, Downing KH (2010) An atomiclevel mechanism for activation of the kinesin molecular motors. Proc Natl Acad Sci USA 107: 4111–4116.PubMedCrossRefGoogle Scholar
  3. 3.
    Sosa H, Hoenger A, Milligan RA (1997) Three different approaches for calculating the threedimensional structure of microtubules decorated with kinesin motor domains. J Struct Biol 118: 149–158.PubMedCrossRefGoogle Scholar
  4. 4.
    Chrétien D, Wade RH (1991) New data on the microtubule surface lattice. Biol Cell 71: 161–174.PubMedCrossRefGoogle Scholar
  5. 5.
    Ashford AJ, Hyman AA, Julio EC (2006) Preparation of tubulin from porcine brain. In: Celis JE (ed) Cell Biology, 3rd edn. Academic Press, Burlington.Google Scholar
  6. 6.
    Tournebize R, Popov A, Kinoshita K, et al (2000) Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts. Nat Cell Biol 2: 13–19.PubMedCrossRefGoogle Scholar
  7. 7.
    Fumaki A, Adachi K (1965) A new method of preparation of a self-perforated micro plastic grid and its application. J Electron Microsc 14: 112–118.Google Scholar
  8. 8.
    Arnal I, Malleter M, Chrétien D (2008) Vitrification of dynamic microtubules. In: Cavalier A, Spehner D, Humbel BM (eds) Handbook of cryo-preparation methods for electron microscopy. CRC Press, Boca Raton.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Frédéric M. Coquelle
    • 1
  • Sophie Blestel
    • 1
    • 2
  • Claire Heichette
    • 1
  • Isabelle Arnal
    • 1
  • Charles Kervrann
    • 2
  • Denis Chrétien
    • 1
  1. 1.CNRS, UMR 6026 Interactions Cellulaires et Moléculaires, IFR 140 Génomique Fonctionnelle Agronomie et SantéUniversité de Rennes 1RennesFrance
  2. 2.Inria, Centre de Rennes Bretagne Atlantique, InriaRennesFrance

Personalised recommendations