Analysis of Chloroplast Movement and Relocation in Arabidopsis

  • Masamitsu WadaEmail author
  • Sam-Geun Kong
Part of the Methods in Molecular Biology book series (MIMB, volume 774)


Chloroplast photorelocation movement is essential for the sessile plant survival and plays a role for efficient photosynthesis and avoiding photodamage of chloroplasts. There are several ways to observe or detect chloroplast movement directly or indirectly. Here, techniques for the induction of chloroplast movement and how to detect the responses, as well as various points of attention and advice for the experiments, are described.

Key words

Accumulation Arabidopsis Avoidance Blue light Chloroplast Light Microbeam Movement Movie Phototropin 



The authors thank Mr. Hidenori Tsuboi for time-lapse images of chloroplast movement induced by microbeam irradiation and Dr. Isao Uemura (Tokyo Metropolitan University) for his support on electron microscopy. This work was supported in part by Grants-in-Aid for scientific research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) (Grants 17084006 to M.W. and 21770050 to S.-G.K.) and the Japan Society for the Promotion of Science (JSPS) (Grant 20227001 to M.W.).


  1. 1.
    Senn, G. (1908) Die Gestalts- und Lageverän­derung der Pflanzen-Chromatophoren., Leipzig, Germany.Google Scholar
  2. 2.
    Inoue, Y., and Shibata, K. (1973) Light-induced chloroplast rearrangements and their action spectra as measured by absorption spectrophotometry. Planta 114, 341–358.CrossRefGoogle Scholar
  3. 3.
    Wada, M., Kagawa, T., and Sato, Y. (2003) Chloroplast movement. Annu. Rev. Plant Biol. 54, 455–468.PubMedCrossRefGoogle Scholar
  4. 4.
    Suetsugu, N., and Wada, M. (2007) Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. Biol. Chem. 388, 927–935.PubMedCrossRefGoogle Scholar
  5. 5.
    Suetsugu, N., and Wada, M. (2009) Chloroplast photorelocation movement. In, The Chloroplast: Interactions with the Environment (Sandelius, A. S., and Aronsson, H., eds.), Springer, Berlin / Heidelberg, Germany, pp. 235–266.Google Scholar
  6. 6.
    Kasahara, M., Kagawa, T., Oikawa, K., Suetsugu, N., Miyao, M., and Wada, M. (2002) Chloroplast avoidance movement reduces photodamage in plants. Nature 420, 829–832.PubMedCrossRefGoogle Scholar
  7. 7.
    Oikawa, K., Yamasato, A., Kong, S.G., Kasahara, M., Nakai, M., Takahashi, F., Ogura, Y., Kagawa, T., and Wada, M. (2008) Chloroplast outer envelope protein CHUP1 is essential for chloroplast anchorage to the plasma membrane and chloroplast movement. Plant Physiol. 148, 829–842.PubMedCrossRefGoogle Scholar
  8. 8.
    Oikawa, K., Kasahara, M., Kiyosue, T., Kagawa, T., Suetsugu, N., Takahashi, F., Kanegae, T., Niwa, Y., Kadota, A., and Wada, M. (2003) Chloroplast unusual positioning1 is essential for proper chloroplast positioning. Plant Cell 15, 2805–2815.PubMedCrossRefGoogle Scholar
  9. 9.
    Tsuboi, H., Yamashita, H., and Wada, M. (2009) Chloroplasts do not have a polarity for light-induced accumulation movement. J. Plant Res. 122, 131–140.PubMedCrossRefGoogle Scholar
  10. 10.
    Tsuboi, H., and Wada, M. (2011) Chloroplasts can move in any direction to avoid strong light. J. Plant Res. 124, 201–210.Google Scholar
  11. 11.
    Kadota, A., Yamada, N., Suetsugu, N., Hirose, M., Saito, C., Shoda, K., Ichikawa, S., Kagawa, T., Nakano, A., and Wada, M. (2009) Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. Proc. Natl. Acad. Sci. USA 106, 13106–13111.PubMedCrossRefGoogle Scholar
  12. 12.
    Suetsugu, N., Yamada, N., Kagawa, T., Yonekura, H., Uyeda, T. Q., Kadota, A., and Wada, M. (2010) Two kinesin-like proteins mediate actin-based chloroplast movement in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 107, 8860–8865.PubMedCrossRefGoogle Scholar
  13. 13.
    Suetsugu, N., Kagawa, T., and Wada, M. (2005) An auxilin-like J-domain protein, JAC1, regulates phototropin-mediated chloroplast movement in Arabidopsis. Plant Physiol. 139, 151–162.PubMedCrossRefGoogle Scholar
  14. 14.
    Kadota, A., and Furuya, M. (1977) Apical growth of protonemata in Adiantum capillus-veneris. I. Red far-red reversible effect on growth cessation in the dark. Dev. Growth Differ. 19, 357–365.CrossRefGoogle Scholar
  15. 15.
    Yatsuhashi, H., and Wada, M. (1990) High-fluence rate responses in the light-oriented chloroplast movement in Adiantum protonemata. Plant Sci. 68, 87–94.CrossRefGoogle Scholar
  16. 16.
    Kagawa, T., Sakai, T., Suetsugu, N., Oikawa, K., Ishiguro, S., Kato, T., Tabata, S., Okada, K., and Wada, M. (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291, 2138–2141.PubMedCrossRefGoogle Scholar
  17. 17.
    Sakai, T., Kagawa, T., Kasahara, M., Swartz, T. E., Christie, J. M., Briggs, W. R., Wada, M., and Okada, K. (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc. Natl. Acad. Sci. USA 98, 6969–6974.PubMedCrossRefGoogle Scholar
  18. 18.
    Hangarter, R. P., and Gest, H. (2004) Pictorial demonstrations of photosynthesis. Photosynth. Res. 80, 421–425.PubMedCrossRefGoogle Scholar
  19. 19.
    Wada, M. (2007) The fern as a model system to study photomorphogenesis. J. Plant Res. 120, 3–16.PubMedCrossRefGoogle Scholar
  20. 20.
    Kasahara, M., Kagawa, T., Sato, Y., Kiyosue, T., and Wada, M. (2004) Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens. Plant Physiol. 135, 1388–1397.PubMedCrossRefGoogle Scholar
  21. 21.
    DeBlasio, S. L., Luesse, D. L., and Hangarter, R. P. (2005) A plant-specific protein essential for blue-light-induced chloroplast movements. Plant Physiol. 139, 101–114.PubMedCrossRefGoogle Scholar
  22. 22.
    Gabryś, H., and Walczak, T. (1980) Photometric study of chloroplast phototranslocation in leaves of land plant. Acta Physiol. Plant. 2, 281–290.Google Scholar
  23. 23.
    Kagawa, T., and Wada, M. (2000) Blue light-induced chloroplast relocation in Arabidopsis thaliana as analyzed by microbeam irradiation. Plant Cell Physiol. 41, 84–93.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BiologyKyushu UniversityFukuokaJapan

Personalised recommendations