Skip to main content

In Vitro Assay for ABA 8′-Hydroxylase: Implications for Improved Assays for Cytochrome P450 Enzymes

  • Protocol
  • First Online:
Seed Dormancy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 773))

Abstract

In vitro assays for cytochrome P450 enzymes developed from plant-derived microsomal extracts have not been used extensively for the characterization and quantification of enzyme activities in plant tissues. We describe here an in vitro assay for abscisic acid (ABA) 8′-hydroxylase that was developed using microsomes extracted from (+)-ABA-induced corn suspension cultures. This assay may be useful for further characterization and monitoring of ABA 8′-hydroxylase activities in germinating seeds, seedlings, and other tissues. Additionally, the optimization protocols provided here may be adapted towards improving in vitro enzyme assays for other cytochrome P450 enzymes expressed in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim GT, Tsukaya H (2002) Regulation of the biosynthesis of plant hormones by cytochrome P450s. J Plant Res 115:169–77

    Article  PubMed  CAS  Google Scholar 

  2. Ehlting J, Sauveplane V, Olry A, Ginglinger JF, Provart NJ, Werck-Reichhart D (2008) An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana. BMC Plant Biol 8:47

    Article  PubMed  Google Scholar 

  3. Yinghong P, Michael TP, Hudson ME, Kay SA, Chory J, Schuler MA (2009) Cytochrome P450 monooxygenases as reporters for circadian-regulated pathways. Plant Physiol 150:858–878

    Article  Google Scholar 

  4. Krochko JE, Abrams GD, Loewen MK, Abrams SR, Cutler AJ (1998) (+)-Abscisic acid 8′-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol 118:849–860

    Article  PubMed  CAS  Google Scholar 

  5. Cutler AJ, Rose PA, Squires TM, Loewen MK, Shaw AC, Quail JW, Krochko JE, Abrams SR (2000) Inhibitors of abscisic acid 8′-hydroxylase. Biochemistry 39:13614–13624

    Article  PubMed  CAS  Google Scholar 

  6. Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA metabolism. EMBO J 23:1647–1656

    Article  PubMed  CAS  Google Scholar 

  7. Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449

    Article  PubMed  CAS  Google Scholar 

  8. Umezawa T, Okamoto M, Kushiro T, Nambara E, Oono Y, Seki M, Kobayashi M, Koshiba T, Kamiya Y, Shinozaki K (2006) CYP707A3, a major ABA 8′-hydroxylase involved in dehydration and rehydration response in Arabidopsis thaliana. Plant J 46:171–182

    Article  PubMed  CAS  Google Scholar 

  9. Yang SH, Choi D (2006) Characterization of genes encoding ABA 8′-hydroxylase in ethylene-induced stem growth of deepwater rice (Oryza sativa L.). Biochem Biophys Res Commun 350:685–690

    Article  PubMed  CAS  Google Scholar 

  10. Okamoto M, Tanaka Y, Abrams SR, Kamiya Y, Seki M, Nambara E (2009) High humidity induces abscisic acid 8′-hydroxylase in stomata and vasculature to regulate local and systemic abscisic acid responses in Arabidopsis. Plant Physiol 149:825–834

    Article  PubMed  CAS  Google Scholar 

  11. Millar AA, Jacobsen JV, Ross JJ, Helliwell CA, Poole AT, Scofield G, Reid JB, Gubler F (2006) Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8′-hydroxylase. Plant J 45:942–954

    Article  PubMed  CAS  Google Scholar 

  12. Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E (2006) CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiol 141:97–107

    Article  PubMed  CAS  Google Scholar 

  13. Chiang GCK, Barua D, Kramer EM, Amasino RM, Donohue K (2009) Major flowering time gene, Flowering Locus C, regulates seed germination in Arabidopsis thaliana. Proc Natl Acad Sci USA 106:11661–11666

    Article  PubMed  CAS  Google Scholar 

  14. Liu Y, Shi L, Ye N, Liu R, Jia W, Zhang J (2009) Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytol 183:1030–1042

    Article  PubMed  CAS  Google Scholar 

  15. Liu Y, Zhang J (2009) Rapid accumulation of NO regulates ABA catabolism and seed dormancy during imbibitions in Arabidopsis. Plant Signal Behav 4:905–907

    Article  PubMed  CAS  Google Scholar 

  16. Matakiadis T, Alboresi A, Jikumaru Y, Tatematsu K, Pichon O, Renou JP, Kamiya Y, Nambara E, Truong HN (2009) The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiol 149:949–960

    Article  PubMed  CAS  Google Scholar 

  17. Werck-Reichhart D, Hehn A, Didierjean L (2000) Cytochrome P450 for engineering herbicide tolerance. Trends Plant Sci 5:116–123.

    Article  PubMed  CAS  Google Scholar 

  18. Schuhegger R, Nafisi M, Mansourova M, Petersen BL, Olsen CE, Svatos A, Halkier BA, Glawischnig E (2006) CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiol 141:1248–1254

    Article  PubMed  CAS  Google Scholar 

  19. Kandel S, Sauveplane V, Compagnon V, Franke R, Millet Y, Schreiber L, Werck-Reichhart D, Pinot F (2007) Characterization of a methyl jasmonate and wounding responsive cytochrome P450 of Arabidopsis thaliana catalyzing dicarboxylic fatty acid formation in vitro. FEBS J 274:5116–5127

    Article  PubMed  CAS  Google Scholar 

  20. Böttcher C, Westphal L, Schmotz C, Prade E, Scheel D, Glawischnig E (2009) The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 21:1830–1845

    Article  PubMed  Google Scholar 

  21. Ludwig SR, Somers DA, Peterson WL, Pohlmann BF, Zarovitz MA, Gengenbach BG, Messing J (1985) High-frequency callus formation from maize protoplasts. Theor Appl Genet 71:344–350

    Google Scholar 

  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  24. Babiano MJ (1995) Metabolism of [2-14C]abscisic acid by a cell-free system from embryonic axes of Cicer arietinum L. seeds. J Plant Physiol 145:374–376

    Article  CAS  Google Scholar 

  25. van der Hoeven TA (1981) Isolation of hepatic microsomes by polyethylene glycol 6000 fractionation of the post mitochondrial fraction. Anal Biochem 115:398–402

    Article  PubMed  Google Scholar 

  26. Hamilton RL, Moorehouse A, Lear SR, Wong JS, Erickson SK (1999) A rapid calcium precipitation method of recovering large amounts of highly pure hepatocyte rough endoplasmic reticulum. J Lipid Res 40:1140–1147

    PubMed  CAS  Google Scholar 

  27. Alden PG, Plumb RS, Jones MD, Rainville PD, Shave D (2009) A rapid ultra-performance liquid chromatography/tandem mass spectrophotometric methodology for the in vitro analysis of Pooled and Cocktail cytochrome P450 assays. Rapid Commun Mass Spectrom 24:147–154

    Article  Google Scholar 

  28. Cutler AJ, Squires TM, Loewen MK, Balsevich JJ (1997) Induction of (+)-abscisic acid 8′-hydroxylase by (+)-abscisic acid in cultured maize cells. J Exp Bot 48:1787–1795

    CAS  Google Scholar 

  29. Bonnafous JC, Fonzes L, Mousseron-Canet M (1971) Synthese d’acide abscisique radioactive. II. Marquage au tritium. Bull Soc Chim Fr 1971:4552–4554

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Garth Abrams and Patricia Rose for their invaluable help in development of the corn ABA 8′-hydroxylase in vitro assay, Sandra Gillett for help with the tobacco in vitro assay, and Ning Zhou for the northern blot analysis. This is National Research Council of Canada publication No. 50161.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan E. Krochko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Krochko, J.E., Cutler, A.J. (2011). In Vitro Assay for ABA 8′-Hydroxylase: Implications for Improved Assays for Cytochrome P450 Enzymes. In: Kermode, A. (eds) Seed Dormancy. Methods in Molecular Biology, vol 773. Humana Press. https://doi.org/10.1007/978-1-61779-231-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-231-1_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-230-4

  • Online ISBN: 978-1-61779-231-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics