Skip to main content

Protein Damage and Repair Controlling Seed Vigor and Longevity

  • Protocol
  • First Online:
Seed Dormancy

Abstract

The formation of abnormal isoaspartyl residues derived from aspartyl or asparaginyl residues is a major source of spontaneous protein misfolding in cells. The repair enzyme protein l-isoaspartyl methyltransferase (PIMT) counteracts such damage by catalyzing the conversion of abnormal isoaspartyl residues to their normal aspartyl forms. Thus, this enzyme contributes to the survival of many organisms, including plants. Analysis of the accumulation of isoaspartyl-containing proteins and its modulation by the PIMT repair pathway, using germination tests, immunodetection, enzymatic assays, and HPLC analysis, gives new insights in understanding controlling mechanisms of seed longevity and vigor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aswad, D.W., Paranandi, M.V., and Schurter, B.T. (2000) Isoaspartate in peptides and proteins: formation, significance, and analysis. J Pharm Biomed Anal 21, 1129–36.

    Article  PubMed  CAS  Google Scholar 

  2. Galletti, P., Ciardiello, A., Ingrosso, D., Di Donato, A., and D’Alessio, G. (1988) Repair of isopeptide bonds by protein carboxyl O-methyltransferase: seminal ribonuclease as a model system. Biochem 27, 1752–7.

    Article  CAS  Google Scholar 

  3. Johnson, B.A., Langmack, E.L., and Aswad, D.W. (1987) Partial repair of deamidation-damaged calmodulin by protein carboxyl methyltransferase. J Biol Chem 262, 122837.

    PubMed  CAS  Google Scholar 

  4. Lowenson, J.D., and Clarke, S. (1991) Structural elements affecting the recognition of L-isoaspartyl residues by the L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypothesis. J Biol Chem 266, 19396406.

    PubMed  CAS  Google Scholar 

  5. Lowenson, J.D., and Clarke, S. (1992) Recognition of D-aspartyl residues in polypeptides by the erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Implications for the repair hypothesis. J Biol Chem 267, 598595.

    PubMed  CAS  Google Scholar 

  6. Kindrachuk, J., Parent, J., Davies, G.F., Dinsmore, M. Attah-Poku, S., and Napper, S. (2003) Overexpression of L-isoaspartate O-methyltransferase in Escherichia coli increases heat shock survival by a mechanism independent of methyltransferase activity. J Biol Chem 278, 508806.

    Article  PubMed  CAS  Google Scholar 

  7. Li, C., and Clarke, S. (1992) A protein methyltransferase specific for altered aspartyl residues is important in Escherichia coli stationary-phase survival and heat-shock resistance. Proc Natl Acad Sci USA 89, 98859.

    Article  PubMed  CAS  Google Scholar 

  8. Kim, E., Lowenson, J.D., Clarke, S., and Young, S.G. (1999) Phenotypic analysis of seizure-prone mice lacking L-isoaspartate (D-aspartate) O-methyltransferase. J Biol Chem 274, 206718.

    Article  PubMed  CAS  Google Scholar 

  9. Kim, E., Lowenson, J.D., MacLaren, D.C., Clarke, S., and Young, S.G. (1997) Deficiency of a protein-repair enzyme results in the accumulation of altered proteins, retardation of growth, and fatal seizures in mice. Proc Natl Acad Sci USA 94, 61327.

    Article  PubMed  CAS  Google Scholar 

  10. Chavous, D.A., Jackson, F.R., and O’Connor C.M. (2001) Extension of the Drosophila lifespan by overexpression of a protein repair methyltransferase. Proc Natl Acad Sci USA 98, 148148.

    Article  PubMed  CAS  Google Scholar 

  11. Kagan, R.M., Niewmierzycka, A., and Clarke, S. (1997) Targeted gene disruption of the Caenorhabditis elegans L-isoaspartyl protein repair methyltransferase impairs survival of dauer stage nematodes. Arch Biochem Biophys 348, 3208.

    Article  PubMed  CAS  Google Scholar 

  12. Mudgett, M.B., and Clarke S. (1993) Characterization of plant L-isoaspartyl methyltransferases that may be involved in seed survival: purification, cloning, and sequence analysis of the wheat germ enzyme. Biochem 32, 1110011.

    Article  CAS  Google Scholar 

  13. Mudgett, M.B., Lowenson, J.D., and Clarke, S. (1997) Protein repair L-isoaspartyl methyltransferase in plants. Phylogenetic distribution and the accumulation of substrate proteins in aged barley seeds. Plant Physiol 115, 14819.

    Article  PubMed  CAS  Google Scholar 

  14. Mudgett, M.B., and Clarke, S. (1996) A distinctly regulated protein repair L-isoaspartylm-ethyltransferase from Arabidopsis thaliana. Plant Mol Biol 30, 72337.

    Article  PubMed  CAS  Google Scholar 

  15. Xu, Q., Belcastro, M.P., Villa, S.T., Dinkins, R.D., Clarke, S.G., and Downie, A.B. (2004) A second protein L-isoaspartyl methyltransferase gene in Arabidopsis produces two transcripts whose products are sequestered in the nucleus. Plant Physiol 136, 265264.

    Article  PubMed  CAS  Google Scholar 

  16. Ogé, L., Bourdais, G., Bove, J., Collet, B., Godin, B., Granier, F., Boutin, J.P., Job, D., Jullien, M., and Grappin, P. (2008) Protein repair L-isoaspartyl methyltransferase 1 is involved in both seed longevity and germination vigor in Arabidopsis. Plant Cell 20, 302237.

    Article  PubMed  Google Scholar 

  17. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 6805.

    Article  PubMed  CAS  Google Scholar 

  18. Clerkx, E.J., El-Lithy, M.E., Vierling, E., Ruys, G.J., Blankestijn-De Vries, H., Groot, S.P., Vreugdenhil, D., and Koornneef, M. (2004) Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. Plant Physiol 135, 43243.

    Article  PubMed  CAS  Google Scholar 

  19. Rajjou, L., Lovigny, Y., Groot, S.P., Belghazi, M., Job, C., and Job, D. (2008) Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol 148, 62041.

    Article  PubMed  CAS  Google Scholar 

  20. Tesnier, K., Strookman-Donkers, H.M., van der Geest, A.I.H.M., Bino, R.J., and Groot, S.P.C. (2002) A controlled deterioration test for Arabidopsis thaliana reveals genetic variation in seed quality. Seed Sci Technol 30, 14965.

    Google Scholar 

  21. Wexler, A., and Hasegawa, S. (1954) Relative humidity-temperature relationships of some satured salt solutions in the temperature range 0° to 50°C. J Res Natl Bur Stand 53, 1925.

    CAS  Google Scholar 

  22. Bradford, M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Anal Biochem 72, 24854.

    Article  PubMed  CAS  Google Scholar 

  23. Johnson, B.A., and Aswad, D.W. (1991) Optimal conditions for the use of protein L-isoaspartyl methyltransferase in assessing the isoaspartate content of peptides and proteins. Anal Biochem 192, 38491.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jean Pierre Boutin and François Perreau for their kind help in setting up the HPLC to analyze isoaspartyl-containing peptides.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Ogé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ogé, L. et al. (2011). Protein Damage and Repair Controlling Seed Vigor and Longevity. In: Kermode, A. (eds) Seed Dormancy. Methods in Molecular Biology, vol 773. Humana Press. https://doi.org/10.1007/978-1-61779-231-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-231-1_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-230-4

  • Online ISBN: 978-1-61779-231-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics