Skip to main content

Emerging Mass Spectrometry-Based Technologies for Analyses of Chromatin Changes: Analysis of Histones and Histone Modifications

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 773))

Abstract

Mass spectrometry (MS) is rapidly becoming an indispensable tool for the analysis of posttranslational modifications (PTMs) of proteins, and particularly histone PTMs that regulate physiological processes. The more traditional bottom-up approach of searching for modifications on peptides rather than intact proteins (top-down) has proven useful for finding phosphorylation, acetylation, and ubiquitination sites. With the use of modern instrumentation and various MS-based techniques, peptides and their PTMs can be characterized in a high-throughput manner while still maintaining high sensitivity and specificity. In complement to bottom-up MS, recent advances in MS technology, such as high-field Fourier transform ion cyclotron resonance (FTICR)-mass spectrometry, have permitted the study of intact proteins and their modifications. On-line and off-line protein separation instruments coupled to FTICR-MS allow the characterization of PTMs previously undetectable with bottom-up approaches. The use of unique fragmentation techniques in FTICR-MS provides a viable option for the study of labile modifications. In this chapter, we provide a detailed description of the analytical tools – mass spectrometry in particular – that are used to characterize modifications on peptides and proteins. We also examine the applicability of these mass spectrometric techniques to the study of PTMs on histones via both the bottom-up and top-down proteomics approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hnilica LS, Stein JL, Stein GS, editors, Histones and other basic nuclear proteins. Boca Raton, FL: CRC Press, 1989

    Google Scholar 

  2. Grant PA (2001). A tale of histone modifications. Genome biology 2:reviews0003.0001-reviews00003.00006

    Google Scholar 

  3. Allfrey VG, Faulkner R, Mirsky AE (1964). Acetylation and methylation of histones and their possible role in the regulation of ribonucleic acid (RNA) synthesis. Proceedings of the National Academy of Sciences of the United States of America 51:786–794

    Article  PubMed  CAS  Google Scholar 

  4. Jason LJM, Moore SC, Lewis JD et al (2002). Histone ubiquitination: a tagging tail unfolds? BioEssays 24:166–174

    Article  PubMed  CAS  Google Scholar 

  5. Davie JR, Murphy LC (1994). Inhibition of transcription selectively reduces the level of ubiquitinated histone H2B in chromatin. Biochemical and Biophysical Research Communications 203:344–350

    Article  PubMed  CAS  Google Scholar 

  6. Dyson MH, Thomson S, Inagaki M et al (2005). MAP kinase-mediated phosphorylation of distinct pools of histone H3 at S10 or S28 via mitogen- and stress-activated kinase 1/2. Journal of Cell Science 118:2247–2259.

    Article  PubMed  CAS  Google Scholar 

  7. Watson JT, Sparkman OD, editors, Introduction to Mass Spectrometry: Instrumentation, Applications and Strategies for Data Interpretation., Fourth ed. Hoboken, N. J.: John Wiley & Sons, Inc., 2007

    Google Scholar 

  8. Karas M, Bachmann D, Bahr U et al (1987). Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Processes 78:53–68

    Article  CAS  Google Scholar 

  9. Fenn JB, Mann M, Meng CK et al (1989). Electrospray ionization for mass spectrometry of large biomolecules. Science 246.:64–71

    Google Scholar 

  10. Guilhaus M (1995). Principles and instrumentation in time-of-flight mass spectrometry. Physical and instrumental concepts. J Mass Spectrom 30:1519–1532

    Google Scholar 

  11. Mamyrin BA (2001). Time-of-flight mass spectrometry (concepts, achievements, and prospects). International Journal of Mass Spectrometry 206:251–266

    Article  CAS  Google Scholar 

  12. Wollnik H (1993). Time-of-flight mass analyzers. Mass Spectrometry Reviews 12:89–114

    Article  CAS  Google Scholar 

  13. Miller PE, Denton MB (1986). The quadrupole mass filter: basic operating concepts. Journal of Chemical Education 63:617–622

    Article  CAS  Google Scholar 

  14. Dawson PH (1986). Quadrupole mass analyzers: performance, design and some recent applications. Mass Spectrometry Reviews 5:1–37

    Article  CAS  Google Scholar 

  15. Allison J, Stepnowski RM (1987). The hows and whys of ion trapping. Anal Chem 59:1072A-1074A, 1076A, 1078A, 1080A, 1082A, 1084A, 1086A, 1088A

    Google Scholar 

  16. March RE (1997). An introduction to quadrupole ion trap mass spectrometry. J Mass Spectrom 32:351–369

    Article  CAS  Google Scholar 

  17. March RE (1998). Quadrupole ion trap mass spectrometry: theory, simulation, recent developments and applications. Rapid Commun Mass Spectrom 12:1543–1554

    Article  CAS  Google Scholar 

  18. Koppenaal DW, Barinaga CJ, Denton MB et al (2005). MS detectors. Anal Chem 77:418A–427A

    Article  PubMed  CAS  Google Scholar 

  19. Harris FM, Trott GW, Morgan TG et al (1984). Signal-to-noise ratios in the measurement of low ion currents using electron multipliers. Mass Spectrometry Reviews 3:209–229

    Article  CAS  Google Scholar 

  20. Marshall AG, Hendrickson CL (2002). Fourier transform ion cyclotron resonance detection: principles and experimental configurations. International Journal of Mass Spectrometry 215:59–75

    Article  CAS  Google Scholar 

  21. Marshall AG, Wang TCL, Ricca TL (1984). Ion cyclotron resonance excitation/deexcitation: a basis for stochastic Fourier transform ion cyclotron mass spectrometry. Chem Phys Lett 105:233–236

    Article  CAS  Google Scholar 

  22. Amster IJ (1996). Fourier transform mass spectrometry. J Mass Spectrom 31:1325–1337

    Article  CAS  Google Scholar 

  23. Mikesh LM, Ueberheide B, Chi A et al (2006). The utility of ETD mass spectrometry in proteomic analysis Biochim Biophys Acta 1764:1811–1822

    Google Scholar 

  24. Crowe MC, Brodbelt JS (2004). Infrared multiphoton dissociation (IRMPD) and collisionally activated dissociation of peptides in a quadrupole ion trap with selective IRMPD of phosphopeptides. Journal of the American Society for Mass Spectrometry 15:1581–1592

    Article  PubMed  CAS  Google Scholar 

  25. Meng F, Forbes AJ, Miller LM et al (2005). Detection and localization of protein modifications by high resolution tandem mass spectrometry. Mass spectrometry reviews 24:126–134

    Article  PubMed  CAS  Google Scholar 

  26. Roepstorff P, Fohlman J (1984). Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11:601

    Article  PubMed  CAS  Google Scholar 

  27. Torres MP, Thapar R, Marzluff WF et al (2005). Phosphatase-Directed Phosphorylation-Site Determination: A Synthesis of Methods for the Detection and Identification of Phosphopeptides. Journal of Proteome Research 4:1628–1635

    Article  PubMed  CAS  Google Scholar 

  28. Wilm M, Neubauer G, Mann M (1996). Parent ion scans of unseparated peptide mixtures. Anal Chem 68:527–533

    Article  PubMed  CAS  Google Scholar 

  29. Borchers C, Parker CE, Deterding LJ et al (1999). Preliminary comparison of precursor scans and liquid chromatography-tandem mass spectrometry on a hybrid quadrupole time-of-flight mass spectrometer. J Chromatogr A 854:119–130

    Article  PubMed  CAS  Google Scholar 

  30. Steen H, Kuster B, Mann M (2001). Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning. J Mass Spectrom 36:782–790

    Article  PubMed  CAS  Google Scholar 

  31. McLafferty FW, Breuker K, Jin M et al (2007). Top-down MS, a powerful complement to the high capabilities of proteolysis proteomics. FEBS Journal 274:6256–6268

    Article  PubMed  CAS  Google Scholar 

  32. Kelleher NL (2004). Top-down proteomics. Anal Chem 76:196A–203A

    Article  CAS  Google Scholar 

  33. LeDuc RD, Kelleher NL, editors, Using ProSight PTM and related tools for targeted protein identification and characterization with high mass accuracy tandem MS data., 2007

    Google Scholar 

  34. Zamdborg L, LeDuc RD, Glowacz K, J. et al (2007). ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry. Nucleic acids research 35(Web Server issue):W701–706

    Google Scholar 

  35. Fuchs B, Hecker D, Scheidtmann KH (1995). Phosphorylation studies on rat p53 using the baculovirus expression system. Manipulation of the phosphorylation state with okadaic acid and influence on DNA binding. Eur J Biochem 228:625–639

    Google Scholar 

  36. Merrick BA, Zhou W, Martin KJ et al (2001). Site-specific phosphorylation of human p53 protein determined by mass spectrometry. Biochemistry 40:4053–4066

    Article  PubMed  CAS  Google Scholar 

  37. Garcia BA, Shabanowitz J, Hunt DF (2005). Analysis of protein phosphorylation by mass spectrometry. Methods (San Diego, CA, United States) 35:256–264

    Google Scholar 

  38. Salih E (2005). Phosphoproteomics by mass spectrometry and classical protein chemistry approaches. Mass spectrometry reviews 24:828–846

    Article  PubMed  CAS  Google Scholar 

  39. Kratzer R, Eckerskorn C, Karas M et al (1998). Suppression effects in enzymatic peptide ladder sequencing using ultraviolet-matrix assisted laser desorption/ionization-mass spectormetry. Electrophoresis 19:1910–1919

    Article  PubMed  CAS  Google Scholar 

  40. Liao P-C, Leykam J, Andrews PC et al (1994). An approach to locate phosphorylation sites in a phosphoprotein: mass mapping by combining specific enzymic degradation with matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem 219:9–20

    Article  PubMed  CAS  Google Scholar 

  41. Andersson L, Porath J (1986). Isolation of Phosphoproteins by Immobilized Metal(Fe3+) Affinity Chromatography. Anal Biochem 154. 250–254 (1986):250–254

    Google Scholar 

  42. Posewitz MC, Tempst P (1999). Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71:2883–2892

    Article  PubMed  CAS  Google Scholar 

  43. Stensballe A, Jensen ON (2001). Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass spectrometry analysis. Proteomics 1:955–966

    Article  PubMed  CAS  Google Scholar 

  44. Raska CS, Parker CE, Dominski Z et al (2002). Direct MALDI-MS/MS of phosphopeptides affinity-bound to immobilized metal ion affinity chromatography beads. Anal Chem 74:3429–3433

    Article  PubMed  CAS  Google Scholar 

  45. Raska CS, Parker CE, Sunnarborg SW et al (2003). Rapid and sensitive identification of epitope-containing peptides by direct matrix-assisted laser desorption/ionization tandem mass spectrometry of peptides affinity-bound to antibody beads. J Am Soc Mass Spectrom 14:1076–1085

    Article  PubMed  CAS  Google Scholar 

  46. Dass C (2001) Principles and Practice of Biological Mass Spectrometry. John Wiley and Sons, Inc., New York, N.Y.

    Google Scholar 

  47. Bennett KL, Stensballe A, Podtelejnikov AV et al (2002). Phosphopeptide detection and sequencing by matrix-assisted laser desorption/ionization quadrupole time-of-flight tandem mass spectrometry. J Mass Spectrom 37:179–190

    Article  PubMed  CAS  Google Scholar 

  48. Lee CH, McComb ME, Bromirski M et al (2001). On-membrane digestion of beta-casein for determination of phosphorylation sites by matrix-assisted laser desorption/ionization quadrupole/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15:191–202

    Article  PubMed  CAS  Google Scholar 

  49. Kalkum M, Lyon GJ, Chait BT (2003). Detection of secreted peptides by using hypothesis-driven multistage mass spectrometry. Proc Natl Acad Sci USA 100:2795–2800

    Article  PubMed  CAS  Google Scholar 

  50. Kim JY, Kim KW, Kwon HJ et al (2002). Probing lysine acetylation with a modification-specific marker ion using high-­performance liquid chromatography/electrospray-mass spectrometry with collision-induced dissociation. Anal Chem 74:5443–5449

    Article  PubMed  CAS  Google Scholar 

  51. Glocker MO, Borchers C, Fiedler W et al (1994). Molecular Characterization of Surface Topology in Protein Tertiary Structures by Amino-Acylation and Mass Spectrometric Peptide Mapping. Bioconjug Chem 5:583–590

    Article  PubMed  CAS  Google Scholar 

  52. Waters_Sep-Paks (2009). http://www.waters.com/webassets/cms/support/docs/720002966en.pdf.

  53. Pickart CM (2001). Ubiquitin enters the new millennium. Mol Cell 8:499–504

    Article  PubMed  CAS  Google Scholar 

  54. Hicke L (2001). A new ticket for entry into budding vesicles – ubiquitin. Cell 106:527–530

    Article  PubMed  CAS  Google Scholar 

  55. Johnson ES (2002). Ubiquitin branches out. Nature Cell Biology 4:E295–E298

    Article  PubMed  CAS  Google Scholar 

  56. Sun ZW, Allis CD (2002). Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418:104–108

    Article  PubMed  CAS  Google Scholar 

  57. Conaway RC, Brower CS, Conaway JW (2002). Emerging roles of ubiquitin in transcription regulation. Science 296:1254–1258

    Article  PubMed  CAS  Google Scholar 

  58. Hershko A, Ciechanover A (1992). The ubiquitin system for protein degradation. Annu Rev Biochem 61:

    Google Scholar 

  59. Laub M, Steppuhn JA, Bluggel M et al (1998). Modulation of calmodulin function by ubiquitin-calmodulin ligase and identification of the responsible ubiquitylation site in vertebrate calmodulin. Eur J Biochem 255:422–431

    Article  PubMed  CAS  Google Scholar 

  60. Peng J, Schwartz DR, Elias JE et al (2003). A proteomics approach to understanding protein ubiquitination. Nature Biotechnology 21:921–926

    Article  PubMed  CAS  Google Scholar 

  61. Warren MRE, Parker CE, Mocanu V et al (2005). Electrospray ionization tandem mass spectrometry of model peptides reveals diagnostic fragment ions for protein ubiquitination. Rapid Communic Mass Spectrom 19:429–437

    Article  CAS  Google Scholar 

  62. Parker CE, Mocanu V, Warren MR et al, editors, Mass Spectrometric Determination of Protein Ubiquitination. Totowa, NJ: Humana Press, 2005

    Google Scholar 

  63. Kirkpatrick DS, Denison C, Gygi SP (2005). Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nature Cell Biology 7:750–757

    Article  PubMed  CAS  Google Scholar 

  64. Marotti LA, Jr., Newitt R, Wang Y et al (2002). Direct Identification of a G Protein Ubiquitination Site by Mass Spectrometry. Biochemistry 41:5067–5074

    Article  PubMed  CAS  Google Scholar 

  65. Vasilescu J, Smith JC, Ethier M et al (2005). Proteomic Analysis of Ubiquitinated Proteins from Human MCF-7 Breast Cancer Cells by Immunoaffinity Purification and Mass Spectrometry. Journal of Proteome Research 4:2192–2200

    Article  PubMed  CAS  Google Scholar 

  66. Wang D, Xu W, McGrath SC et al (2005). Direct Identification of Ubiquitination Sites on Ubiquitin-Conjugated CHIP Using MALDI Mass Spectrometry. Journal of Proteome Research 4:1554–1560

    Article  PubMed  CAS  Google Scholar 

  67. Nemeth-Cawley JF, Tangarone BS, Rouse JC (2003). “Top down” characterization is a complementary technique to peptide sequencing for identifying protein species in complex mixtures. Journal of Proteome Research 2:495–505

    Article  PubMed  CAS  Google Scholar 

  68. Battle DJ, Doudna JA (2001). The stem-loop binding protein forms a highly stable and specific complex with the 3′ stem-loop of histone mRNAs. [Erratum to document cited in CA134:363062]. RNA 7:642–643

    Article  CAS  Google Scholar 

  69. Ogorzalek-Loo RR, Hayes R, Yang Y et al (2005). Top-down, bottom-up, and side-to-side proteomics with virtual 2-D gels. International Journal of Mass Spectrometry 240:317–325

    Article  CAS  Google Scholar 

  70. Strader MB, VerBerkmoes NC, Tabb DL et al (2004). Characterization of the 70S Ribosome from Rhodopseudomonas palustris Using an Integrated “Top-Down” and “Bottom-Up” Mass Spectrometric Approach. Journal of Proteome Research 3:965–978

    Article  PubMed  CAS  Google Scholar 

  71. Bergquist J (2003). FTICR mass spectrometry in proteomics. Current Opinion in Molecular Therapeutics 5:310–314

    PubMed  CAS  Google Scholar 

  72. Borchers CH, Thapar R, Petrotchenko EV et al (2006). Combined top-down and bottom-up proteomics identifies a phosphorylation site in stem-loop-binding proteins that contributes to high-affinity RNA binding. Proceeding of the National Academy of Sciences of the USA 103:3094–3099

    Article  CAS  Google Scholar 

  73. Parks BA, Jiang L, Thomas PM et al (2007). Top-Down Proteomics on a Chromatographic Time Scale Using Linear Ion Trap Fourier Transform Hybrid Mass Spectrometers. Anal Chem 79:7984–7991

    Article  PubMed  CAS  Google Scholar 

  74. Borchers CH, Marquez VE, Schroeder GK et al (2004). Fourier transform ion cyclotron resonance MS reveals the presence of a water molecule in an enzyme transition-state analogue complex. Proceedings of the National Academy of Sciences of the United States of America 101:15341–15345

    Article  PubMed  CAS  Google Scholar 

  75. Millipore (2007). http://direct.millipore.com/userguides.nsf/a73664f9f981af8c852569b9005b4eee/55fe75ff9addc81385256b3e006a4f10/$FILE/PR02358A.pdf.

  76. Seguchi K, Takami Y, Nakayama T (1995). Targeted disruption of 01H1 encoding a particular H1 histone variant causes changes in protein patterns in the DT40 chicken B cell line. Journal of Molecular Biology 254:869–880

    Article  PubMed  CAS  Google Scholar 

  77. Van den Eijnden-Van Raaij AJM, Koornneef I, Van Oostwaard TMJ et al (1987). Cation-exchange high-performance liquid chromato­graphy: separation of highly basic proteins using volatile acidic solvents. Anal Biochem 163:263–269

    Article  PubMed  Google Scholar 

  78. Hoffmann P, Ji H, Moritz RL et al (2001). Continuous free-flow electrophoresis separation of cytosolic proteins from the human colon carcinoma cell line LIM 1215: a non two-dimensional gel electrophoresis-based proteome analysis strategy. Proteomics 1:807–818

    Article  PubMed  CAS  Google Scholar 

  79. Ouvry-Patat SA, Torres MP, Quek H-H et al (2008). Free-flow electrophoresis for top-down proteomics by Fourier transform ion cyclotron resonance mass spectrometry. Proteomics 8:2798–2808

    Article  PubMed  CAS  Google Scholar 

  80. Sneekes E-J, Han J, Elliot M et al (2009). Accurate molecular weight analysis of histones using FFE and RP-HPLC on monolithic capillary columns. Journal of separation science 32:2691–2698

    Article  PubMed  CAS  Google Scholar 

  81. Toll H, Wintringer R, Schweiger-Hufnagel U et al (2005). Comparing monolithic and microparticular capillary columns for the separation and analysis of peptide mixtures by liquid chromatography-mass spectrometry. J Separation Science 28:1666–1674

    Article  CAS  Google Scholar 

  82. Asara JM, Allison J (1999). Enhanced detection of phosphopeptides in matrix-assisted laser desorption/ionization mass spectrometry using ammonium salts. J Am Soc Mass Spectrom 10:35–44

    Article  PubMed  CAS  Google Scholar 

  83. Arlinger L, (1975) Analytical isotachophoresis – principle of separation and detection. In: Peeters H, editor. Protides of Biological Fluids. Pergamon Press, Elmsford, N.Y.

    Google Scholar 

Download references

Acknowledgements

This work was supported by a Genome Canada/Genome British Columbia Technology Development Grant and a platform grant from Genome Canada and Genome British Columbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph H. Borchers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shah, B., Kozlowski, R.L., Han, J., Borchers, C.H. (2011). Emerging Mass Spectrometry-Based Technologies for Analyses of Chromatin Changes: Analysis of Histones and Histone Modifications. In: Kermode, A. (eds) Seed Dormancy. Methods in Molecular Biology, vol 773. Humana Press. https://doi.org/10.1007/978-1-61779-231-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-231-1_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-230-4

  • Online ISBN: 978-1-61779-231-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics