Skip to main content

Screening of CEST MR Contrast Agents

  • Protocol
  • First Online:
In vivo NMR Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 771))

Abstract

There has been a tremendous amount of interest in developing new MR contrast agents for cellular and molecular imaging applications such as the visualization of tumors, highlighting areas of angiogenesis, highlighting of contrast agent-labeled therapeutic stem cells, and highlighting of contrast agent-labeled drug delivery vehicles. The contrast properties of paramagnetic and super-paramagnetic relaxation-based agents have allowed MR imaging to be used as a tool for all of the above applications. However, a new class of MR contrast agents, chemical exchange saturation transfer (CEST) agents, provides additional features such as (1) the ability to highlight multiple biological events at once within an image through the distinguishability of the different CEST contrast agents, (2) the ability to toggle the contrast “off-to-on” by applying a saturation pulse, and (3) potentially providing more information about the environment surrounding the contrast agent such as the pH or concentration of metabolites. In this chapter, we will focus on the methods which can be used in terms of acquisition schemes and hardware to screen these agents through MR imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caravan, P., Ellison, J. J., McMurry, T. J., and Lauffer, R. B. (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chemical Reviews, 99, 2293–2352.

    Article  PubMed  CAS  Google Scholar 

  2. Rocklage, S. M., Cacheris, W. P., Quay, S. C., Hahn, F. E., and Raymond, K. N. (1989) Synthesis and characterization of a paramagnetic chelate for magnetic resonance imaging enhancement. Inorgnic Chemistry, 28, 477–485.

    Article  CAS  Google Scholar 

  3. Na, H. B., Lee, J. H., An, K., Park, Y. I., Park, M., Lee, I. S., Nam, D. H., Kim, S. T., Kim, S. H., Kim, S. W., Lim, K. H., Kim, K. S., Kim, S. O., and Hyeon, T. (2007) Development of a T 1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angewandte Chemie International Edition England, 46, 5397–5401.

    Article  CAS  Google Scholar 

  4. Bjornerud, A. and Johansson, L. (2004) The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system. NMR in Biomedicine, 17, 465–77.

    Article  PubMed  Google Scholar 

  5. Srinivas, M., Morel, P. A., Ernst, L. A., Laidlaw, D. H., and Ahrens, E. T. (2007) Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magnetic Resonance in Medicine, 58, 725–734.

    Article  PubMed  CAS  Google Scholar 

  6. Janjic, J. M., Srinivas, M., Kadayakkara, D. K. K., and Ahrens, E. T. (2008) Self-delivering nanoemulsions for dual fluorine-19 MRI and fluorescence detection. Journal of the American Chemical Society, 130, 2832–2841.

    Article  PubMed  CAS  Google Scholar 

  7. Waters, E. A., Chen, J. J., Yang, X. X., Zhang, H. Y., Neumann, R., Santeford, A., Arbeit, J., Lanza, G. M., and Wickline, S. A. (2008) Detection of targeted perfluorocarbon nanoparticle binding using F-19 diffusion weighted MR spectroscopy. Magnetic Resonance in Medicine, 60, 1232–1236.

    Article  PubMed  CAS  Google Scholar 

  8. Waters, E. A., Chen, J. J., Allen, J. S., Zhang, H. Y., Lanza, G. M., and Wickline, S. A. (2008) Detection and quantification of angiogenesis in experimental valve disease with integrin-targeted nanoparticles and 19-fluorine MRI/MRS. Journal of Cardiovascular Magnetic Resonance, 10, 43.

    Article  PubMed  Google Scholar 

  9. Ruiz-Cabello, J., Walczak, P., Kedziorek, D. A., Chacko, V. P., Schmieder, A. H., Wickline, S. A., Lanza, G. M., and Bulte, J. W. M. (2008) In vivo “hot spot” MR imaging of neural stem cells using fluorinated nanoparticles. Magnetic Resonance in Medicine, 60, 1506–1511.

    Article  PubMed  Google Scholar 

  10. Partlow, K. C., Chen, J. J., Brant, J. A., Neubauer, A. M., Meyerrose, T. E., Creer, M. H., Nolta, J. A., Caruthers, S. D., Lanza, G. M., and Wickline, S. A. (2007) F-19 magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB Journal, 21, 1647–1654.

    Article  PubMed  CAS  Google Scholar 

  11. Neubauer, A. M., Caruthers, S. D., Hockett, F. D., Cyrus, T., Robertson, J. D., Allen, J. S., Williams, T. D., Fuhrhop, R. W., Lanza, G. M., and Wickline, S. A. (2007) Fluorine cardiovascular magnetic resonance angiography in vivo at 1.5 T with perfluorocarbon nanoparticle contrast agents. Journal of Cardiovascular Magnetic Resonance, 9, 565–573.

    Article  PubMed  Google Scholar 

  12. Hunjan, S., Mason, R. P., Constantinescu, A., Peschke, P., Hahn, E. W., and Antich, P. P. (1998) Regional tumor oximetry: F-19 NMR spectroscopy of hexafluorobenzene. International Journal of Radiation Oncology, Biology, Physics, 41, 161–171.

    Google Scholar 

  13. Yu, J. X., Kodibagkar, V. D., Cui, W. N., and Mason, R. P. (2005) F-19: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Current Medicinal Chemistry, 12, 819–848.

    Article  PubMed  CAS  Google Scholar 

  14. Adams, R. W., Aguilar, J. A., Atkinson, K. D., Cowley, M. J., Elliott, P. I. P., Duckett, S. B., Green, G. G. R., Khazal, I. G., Lopez-Serrano, J., and Williamson, D. C. (2009) Reversible interactions with para-hydrogen enhance NMR sensitivity by polarization transfer. Science, 323, 1708–1711.

    Article  PubMed  CAS  Google Scholar 

  15. Bouchard, L. S., Burt, S. R., Anwar, M. S., Kovtunov, K. V., Koptyug, I. V., and Pines, A. (2008) NMR imaging of catalytic hydrogenation in microreactors with the use of para-hydrogen. Science, 319, 442–445.

    Article  PubMed  CAS  Google Scholar 

  16. Navon, G., Song, Y. Q., Room, T., Appelt, S., Taylor, R. E., and Pines, A. (1996) Enhancement of solution NMR and MRI with laser-polarized xenon. Science, 271, 1848–1851.

    Article  CAS  Google Scholar 

  17. Goodson, B. M., Song, Y. Q., Taylor, R. E., Schepkin, V. D., Brennan, K. M., Chingas, G. C., Budinger, T. F., Navon, G., and Pines, A. (1997) In vivo NMR and MRI using injection delivery of laser-polarized xenon. Proceedings of the National Academy of Sciences of the United States of America, 94, 14725–14729.

    Article  PubMed  CAS  Google Scholar 

  18. Song, Y. Q., Gaede, H. C., Pietrass, T., Barrall, G. A., Chingas, G. C., Ayers, M. R., and Pines, A. (1995) Spin-polarized Xe-129 gas imaging of materials. Journal of Magnetic Resonance Series A, 115, 127–130.

    Article  CAS  Google Scholar 

  19. Ardenkjaer-Larsen, J. H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M. H., Servin, R., Thaning, M., and Golman, K. (2003) Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proceedings of the National Academy of Sciences of the United States of America, 100, 10158–10163.

    Article  PubMed  CAS  Google Scholar 

  20. Golman, K., Ardenaer-Larsen, J. H., Petersson, J. S., Mansson, S., and Leunbach, I. (2003) Molecular imaging with endogenous substances, Proceedings of the National Academy of Sciences of the United States of America, 100, 10435–10439.

    Article  PubMed  CAS  Google Scholar 

  21. Day, S. E., Kettunen, M. I., Gallagher, F. A., Hu, D. E., Lerche, M., Wolber, J., Golman, K., Ardenkjaer-Larsen, J. H., and Brindle, K. M. (2007) Detecting tumor response to treatment using hyperpolarized C-13 magnetic resonance imaging and spectroscopy. Nature Medicine, 13, 1382–1387.

    Article  PubMed  CAS  Google Scholar 

  22. Golman, K., in’t Zandt, R., Lerche, M., Pehrson, R., and Ardenkjaer-Larsen, J. H. (2006) Metabolic imaging by hyperpolarized C-13 magnetic resonance imaging for in vivo tumor diagnosis. Cancer Research, 66, 10855–10860.

    Article  PubMed  CAS  Google Scholar 

  23. Gallagher, F. A., Kettunen, M. I., Day, S. E., Hu, D. E., Ardenkjaer-Larsen, J. H., in’t Zandt, R., Jensen, P. R., Karlsson, M., Golman, K., Lerche, M. H., and Brindle, K. M. (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized C-13-labelled bicarbonate Nature, 453, 940–U73.

    Article  PubMed  CAS  Google Scholar 

  24. Wolff, S. D., and Balaban, R. S. (1990) NMR imaging of labile proton-exchange. Journal of Magnetic Resonance, 86, 164–169.

    CAS  Google Scholar 

  25. Guivel-Scharen, V., Sinnwell, T., Wolff, S. D., and Balaban, R. S. (1998) Detection of proton chemical exchange between metabolites and water in biological tissues. Journal of Magnetic Resonance, 133, 36–45.

    Article  PubMed  CAS  Google Scholar 

  26. Dagher, A. P., Aletras, A., Choyke, P., and Balaban, R. S. (2000) Imaging of urea using chemical exchange-dependent saturation transfer at 1.5 T. Journal of Magnetic Resonance Imaging, 12, 745–748.

    Article  PubMed  CAS  Google Scholar 

  27. Ward, K. M., Aletras, A. H., and Balaban, R. S. (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). Journal of Magnetic Resonance, 143, 79–87.

    Article  PubMed  CAS  Google Scholar 

  28. Ward, K. M. and Balaban, R. S. (2000) Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magnetic Resonance in Medicine, 44, 799–802.

    Article  PubMed  CAS  Google Scholar 

  29. Aime, S., Crich, S. G., Gianolio, E., Giovenzana, G. B., Tei, L., and Terreno, E. (2006) High sensitivity lanthanide(III) based probes for MR-medical imaging. Coordination Chemistry Reviews, 250, 1562–1579.

    Article  CAS  Google Scholar 

  30. Sherry, A. D. and Woods, M. (2008) Chemical exchange saturation transfer contrast agents for magnetic resonance imaging. Annual Review of Biomedical Engineering, 10, 391–411.

    Article  PubMed  CAS  Google Scholar 

  31. Zhou, J., and van Zijl, P. C. M. (2006) Chemical exchange saturation transfer imaging and spectroscopy. Progress in NMR Spectroscopy, 48, 109–136.

    Article  CAS  Google Scholar 

  32. Yoo, B. and Pagel, M. D. (2008) An overview of responsive MRI contrast agents for molecular imaging. Frontiers in Bioscience, 13, 1733–1752.

    Article  PubMed  CAS  Google Scholar 

  33. Liddel, U. and Ramsey, N. F. (1951) Temperature dependent magnetic shielding in ethyl alcohol. Journal of Chemical Physics, 19, 1608.

    Article  CAS  Google Scholar 

  34. Arnold, J. T. and Packard, M. E. (1951) Variations in absolute chemical shift of nuclear induction signals of hydroxyl groups of methyl and ethyl alcohol. Journal of Chemical Physics, 19, 1608–1609.

    Article  CAS  Google Scholar 

  35. Gutowsky, H. S. and Holm, C. H. (1956) Rate processes and nuclear magnetic resonance spectra.2. hindered internal rotation of amides. Journal of Chemical Physics, 25, 1228–1234.

    Article  CAS  Google Scholar 

  36. Gutowsky, H. S. and Saika, A. (1953) Dissociation, chemical exchange, and the proton magnetic resonance in some aqueous electrolytes. Journal of Chemical Physics, 21, 1688–1694.

    Article  CAS  Google Scholar 

  37. Forsen, S. and Hoffman, R. A. (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. Journal of Chemical Physics, 39, 2892–2901.

    Article  CAS  Google Scholar 

  38. McConnell, H. M. (1958) Reaction rates by nuclear magnetic resonance. Journal of Chemical Physics, 28, 430–431.

    Article  CAS  Google Scholar 

  39. Arnold, D. L. (1956) Magnetic resonances of protons in ethyl alcohol. Physical Review, 102, 135–150.

    Article  Google Scholar 

  40. Allerhand, A. and Gutowsky, H. S. (1964) Spin-echo NMR studies of chemical exchange. 1. some general aspects. Journal of Chemical Physics, 41, 2115–2126.

    Article  CAS  Google Scholar 

  41. Gutowsky, H. S., Vold, R. L., and Wells, E. J. (1965) Theory of chemical exchange effects in magnetic resonance. Journal of Chemical Physics, 43, 4107.

    Article  CAS  Google Scholar 

  42. Woessner, D. E. (1961) Nuclear transfer effects in nuclear magnetic resonance pulse experiments. Journal of Chemical Physics, 35, 41–48.

    Article  CAS  Google Scholar 

  43. McConnell, H. M. and Thompson, D. D. (1957) Molecular transfer of nonequilibrium nuclear spin magnetization. Journal of Chemical Physics, 26, 958–959.

    Article  CAS  Google Scholar 

  44. Zhou, J. Y. and van Zijl, P. C. M. (2006) Chemical exchange saturation transfer imaging and spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 48, 109–136.

    Article  CAS  Google Scholar 

  45. Zhou, J., Wilson, D. A., Sun, P. Z., Klaus, J. A., and van Zijl, P. C. M. (2004) Quantitative description of proton exchange processes between water and endogenous and exogenous agents for WEX, CEST, and APT experiments. Magnetic Resonance in Medicine, 51, 945–952.

    Article  PubMed  Google Scholar 

  46. Goffeney, N., Bulte, J. W. M., Duyn, J., Bryant, L. H., and van Zijl, P. C. M. (2001) Sensitive NMR detection of cationic-polymer-based gene delivery systems using saturation transfer via proton exchange. Journal of the American Chemical Society, 123, 8628–8629.

    Article  PubMed  CAS  Google Scholar 

  47. Snoussi, K., Bulte, J. W. M., Gueron, M., and van Zijl, P. C. M. (2003) Sensitive CEST agents based on nucleic acid imino proton exchange: detection of poly(rU) and of a dendrimer-poly(rU) model for nucleic acid delivery and pharmacology. Magnetic Resonance in Medicine, 49, 998–1005.

    Article  PubMed  CAS  Google Scholar 

  48. Zhou, J., Lal, B., Wilson, D. A., Laterra, J., and van Zijl, P. C. (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magnetic Resonance in Medicine, 50, 1120–1126.

    Article  PubMed  Google Scholar 

  49. Zhou, J., Payen, J.-F., Wilson, D. A., Traystman, R. J., and van Zijl, P. C. (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nature Medicine, 9, 1085–1090.

    Article  PubMed  CAS  Google Scholar 

  50. Zhang, S., Merritt, M., Woessner, D. E., Lenkinski, R. E., and Sherry, A. D. (2003) PARACEST agents: modulating MRI contrast via water proton exchange. Accounts of Chemical Research, 36, 783–790.

    Article  PubMed  CAS  Google Scholar 

  51. Aime, S., Delli Castelli, D., and Terreno, E. (2002) Novel pH-reporter MRI contrast agents. Angewandte Chemie-International Edition, 41, 4334–4336.

    Article  CAS  Google Scholar 

  52. Zhang, S., Winter, P., Wu, K., and Sherry, A. D. (2001) A novel europium(III)-based MRI contrast agent. Journal of the American Chemical Society, 123, 1517–1518.

    Article  PubMed  CAS  Google Scholar 

  53. Aime, S., Castelli, D. D., and Terreno, E. (2005) Highly sensitive MRI chemical exchange saturation transfer agents using liposomes. Angewandte Chemie-International Edition, 44, 5513–5515.

    Article  CAS  Google Scholar 

  54. Terreno, E., Cabella, C., Carrera, C., Castelli, D. D., Mazzon, R., Rollet, S., Stancanello, J., Visigalli, M., and Aime, S. (2007) From spherical to osmotically shrunken paramagnetic liposomes: an improved generation of LIPOCEST MRI agents with highly shifted water protons. Angewandte Chemie-International Edition, 46, 966–968.

    Article  CAS  Google Scholar 

  55. Winter, P. M., Cai, K., Chen, J., Adair, C. R., Kiefer, G. E., Athey, P. S., Gaffney, P. J., Buff, C. E., Robertson, J. D., Caruthers, S. D., Wickline, S. A., and Lanza, G. M. (2006) Targeted PARACEST nanoparticle contrast agent for the detection of fibrin. Magnetic Resonance in Medicine, 56, 1384–1388.

    Article  PubMed  CAS  Google Scholar 

  56. Liu, G., Har-el, Y. E., Moake, M., Long, C., Walczak, P., Gilad, A. A., Zhang, J., Cardona, A., Jamil, M., Sgouros, G., Bulte, J. W. M., van Zijl, P. C. M., and McMahon, M. T. (2010) In vivo imaging of lymphatic delivery of multi-color DIACEST liposomes. Proceedings of ISMRM, Stockholm, SWE.

    Google Scholar 

  57. Schröder, L., Lowery, T. J., Hilty, C., Wemmer, D. E., and Pines, A. (2006) Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science, 314, 446–449.

    Article  PubMed  Google Scholar 

  58. Schröder, L., Meldrum, T., Smith, M., Lowery, T. J., Wemmer, D. E., and Pines, A. (2008) Temperature response of Xe-129 depolarization transfer and its application for ultrasensitive NMR detection. Physical Review Letters, 100, 257603.

    Article  PubMed  Google Scholar 

  59. Stancanello, J., Terreno, E., Castelli, D. D., Cabella, C., Uggeri, F., and Aime, S. (2008) Development and validation of a smoothing-splines-based correction method for improving the analysis of CEST-MR images. Contrast Media & Molecular Imaging, 3, 136–149.

    Article  CAS  Google Scholar 

  60. Sun, P. Z., Farrar, C. T., and Sorensen, A. G. (2007) Correction for artifacts induced by B-0 and B-1 field inhomogeneities in pH-Sensitive chemical exchange saturation transfer (CEST) Imaging. Magnetic Resonance in Medicine, 58, 1207–1215.

    Article  PubMed  Google Scholar 

  61. Kim, M., Gillen, J., Landman, B. A., Zhou, J., and van Zijl, P. C. M. (2009) WAter Saturation Shift Referencing (WASSR) for chemical exchange saturation transfer experiments. Magnetic Resonance in Medicine, 61, 1441–1450.

    Article  PubMed  Google Scholar 

  62. McMahon, M. T., Gilad, A. A., DeLiso, M. A., Berman, S. M., Bulte, J. W., and van Zijl, P. C. (2008) New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magnetic Resonance in Medicine, 60, 803–812.

    Article  PubMed  CAS  Google Scholar 

  63. Aime, S., Carrera, C., Delli Castelli, D., Geninatti Crich, S., and Terreno, E. (2005) Tunable imaging of cells labeled with MRI-PARACEST agents. Angewandte Chemie-International Edition England, 44, 1813–1815.

    Article  CAS  Google Scholar 

  64. Vinogradov, E., Zhang, S., Lubag, A., Balschi, J. A., Sherry, A. D., and Lenkinski, R. E. (2005) On-resonance low B1 pulses for imaging of the effects of PARACEST agents. Journal of Magnetic Resonance, 176, 54–63.

    Article  PubMed  CAS  Google Scholar 

  65. Castile J. D. and Taylor, K. M. (1999) Factors affecting the size distribution of liposomes produced by freeze–thaw extrusion. International Journal of Pharmaceutics, 188, 87–95.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. McMahon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Song, X., Chan, K.W., McMahon, M.T. (2011). Screening of CEST MR Contrast Agents. In: Schröder, L., Faber, C. (eds) In vivo NMR Imaging. Methods in Molecular Biology, vol 771. Humana Press. https://doi.org/10.1007/978-1-61779-219-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-219-9_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-218-2

  • Online ISBN: 978-1-61779-219-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics