Skip to main content

Applications of Hyperpolarized Agents in Solutions

  • Protocol
  • First Online:
In vivo NMR Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 771))

Abstract

This chapter provides an overview of pulse sequences adapted to hyperpolarized MR imaging. Applications of hyperpolarized agents in aqueous solution are reviewed. Vascular (e.g., angiography, perfusion, and catheter tracking) as well as metabolic (e.g., oncology, cardiology, neurology, and pH mapping) applications are covered. Due to the rapid development of new applications for hyperpolarized agents, a review format has been used for this chapter instead of a strict protocol/procedure structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Månsson, S., Johansson, E., Magnusson, P., Chai, C.M., Hansson, G., Petersson, J.S., Ståhlberg, F., and Golman, K. (2006) (13)C imaging – a new diagnostic platform. Eur. Radiol. 16, 57–67.

    Article  PubMed  Google Scholar 

  2. Olsson, L.E., Chai, C.-M., Axelsson, O., Karlsson, M., Golman, K., and Petersson, J.S. (2006) MR coronary angiography in pigs with intra arterial injection of a hyperpolarized (13)C substance. Magn. Reson. Med. 55, 731–737.

    Article  PubMed  Google Scholar 

  3. Golman, K. and Petersson, J.S. (2006) Metabolic imaging and other applications of hyperpolarized (13)C. Acad. Radiol. 13, 932–942.

    Article  PubMed  Google Scholar 

  4. Ishii, M., Emami, K., Kadlecek, S., Petersson, J.S., Golman, K, et al. (2007) Hyperpolarized (13)C MRI of the pulmonary vasculature and parenchyma. Magn. Reson. Med. 57, 459–463.

    Article  PubMed  CAS  Google Scholar 

  5. Golman, K., Olsson, L.E., Axelsson, O., Månsson, S., Karlsson, M., and Petersson, J.S. (2003) Molecular imaging using hyperpolarized (13)C. Br. J. Radiol. 76, 118–127.

    Article  CAS  Google Scholar 

  6. Wild, J.M., The, K., Woodhouse, N., Paley, M.N., de Zanche, N., and Kasuboski, L. (2006) Steady-state free precession with hyperpolarized 3He: experiments and theory. J. Magn. Reson. 183, 13–24.

    Article  PubMed  CAS  Google Scholar 

  7. Norris D.G. and Hutchison J.M.S. (1990) Concomitant magnetic field gradients and their effects on imaging at low magnetic field strengths. Magn. Reson. Imaging 8, 33–37.

    Article  PubMed  CAS  Google Scholar 

  8. Comment, A., van den Brandt, B., Uffmann, K., et al. (2007) Design and performance of a DNP prepolarizer coupled to a rodent MRI scanner. Conc. Magn. Reson. 31, 255–269.

    Google Scholar 

  9. Diehl, K.H., Hull, R., Morton, D., Pfister, R., Rabemampianina, Y., Smith, D., Vidal, J.M., and van de Vorstenbosch, C. (2001) European federation of pharmaceutical industries association and European centre for the validation of alternative methods. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol. 21, 15–23.

    Article  PubMed  CAS  Google Scholar 

  10. Davies, B. and Morris, T. (1993) Physiological parameters in laboratory animals and humans. Pharm Res. 10, 1093–1095.

    Article  PubMed  CAS  Google Scholar 

  11. Oppelt, A., Graumann, R., Barfuss, H., et al. (1986) FISP—a new fast MRI sequence. Electromedica. 54, 15–18.

    Google Scholar 

  12. Scheffler, K., Heid, O., and Hennig, J. (2001) Magnetization preparation during the steady state: fat-saturated 3D TrueFISP. Magn. Reson. Med. 45, 1075–1080.

    Article  PubMed  CAS  Google Scholar 

  13. Scheffler, K. (2003) On the transient phase of balanced SSFP sequences. Magn. Reson. Med. 49, 781–783.

    Article  PubMed  Google Scholar 

  14. Petersson, J.S. and Christoffersson, J.-O. (1997) A multi-dimensional partition analysis of SSFP image pulse sequences. Magn. Reson. Imaging 15, 451–467.

    Article  PubMed  CAS  Google Scholar 

  15. Gyngell, M.L. (1989) The steady-state signals in short-repetition-time sequences. J. Magn. Reson. 81, 474–483.

    CAS  Google Scholar 

  16. Patz, S. (1989) Steady-state free precession: an overview of basic concepts and applications. Adv Magn Reson Imaging 1, 73–102.

    Google Scholar 

  17. Hennig, J. (1991) Echoes—how to generate, recognize, use or avoid them in MR-imaging sequences. Part II: echoes in imaging sequences. Concepts Magn. Reson. 3, 179–192.

    Article  CAS  Google Scholar 

  18. Deimling, M. and Heid, O. (1994) Magnetization prepared true FISP imaging. Proc. Intl. Soc. Mag. Reson. Med. 495.

    Google Scholar 

  19. Svensson, J., Månsson, S., Johansson, E., Petersson, J.S., and Olsson L.E. (2003) Hyperpolarized (13)C MR angiography using TrueFISP. Magn. Reson. Med. 50, 256–262.

    Article  PubMed  Google Scholar 

  20. Hennig, J., Nauerth A., and Friedburg, H. (1986) RARE imaging: a fast imaging method for clinical MR. Magn. Reson. Med. 3, 823–833.

    Article  PubMed  CAS  Google Scholar 

  21. Gallagher, F.A., Kettunen, M.I., Day, S.E., Hu, D. E., Ardenkjær-Larsen, J.H., et al. (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized (13) C-labelled bicarbonate. Nature 453, 940–944.

    Article  PubMed  CAS  Google Scholar 

  22. Golman, K., Petersson, J.S., Magnusson, P., Johansson, E., et al. (2008) Cardiac metabolism measured noninvasively by hyperpolarized (13)C MRI. Magn. Reson. Med. 59, 1005–1013.

    Article  PubMed  CAS  Google Scholar 

  23. Yen, Y.-F., Kohler, S.J., Chen, A.P., Tropp, J., et al. (2009) Imaging considerations for in vivo (13)C metabolic mapping using hyperpolarized (13)C-pyruvate. Magn. Reson. Med. 62, 1–10.

    Article  PubMed  CAS  Google Scholar 

  24. Ebel, A., Maudsley A.A., and Schuff, N. (2007) Correction of local B 0 shifts in 3D EPSI of the human brain at 4 T. Magn. Reson.Imaging 25, 377–380.

    Article  PubMed  Google Scholar 

  25. Cunningham, C.H., Vigneron, D.B., Chen, A.P., et al. (2005) Design of flyback echo-planar readout gradients for magnetic resonance spectroscopic imaging. Magn. Reson. Med. 54, 1286–1289.

    Article  PubMed  Google Scholar 

  26. Chen, A.P., Alberts, M.J., Chunningham, C.H., et al. (2007) Hyperpolarized C-13 spectroscopic imaging of the TRAMP mouse at 3T—initial experience. Magn. Reson. Med. 58, 1099–1106.

    Article  PubMed  CAS  Google Scholar 

  27. Thévenaz, P., Blu, T., and Unser, M. (2000) Interpolaton revisited. IEEE Trans. Med. Imaging 19, 739–758.

    Article  PubMed  Google Scholar 

  28. Yaroslavsky, L.P. (2001) Signal sinc-interpolation: a fast computer algorithm. Bioimaging 4, 225–231.

    Article  Google Scholar 

  29. Bracewell, R.N. (1986) The Fourier Transform and Its Applications. McGraw-Hill: New York.

    Google Scholar 

  30. Chen, P.A., Leung, K., Lam, W., Hurd, R.E., Vigneron, D.B., and Cunningham, C.H. (2009) Design of spectral-spatial outer volume suppression RF pulses for tissue specific metabolic characterization with hyperpolarized 13C pyruvate. J. Magn. Reson. 200, 344–348.

    Article  PubMed  CAS  Google Scholar 

  31. Larson, P.E.Z., Kerr, A.B., Chen, A.P., Lustig, M.S., Zierhut, M.L., Hu, S., Cunningham, C.H., Pauly, J.M., Kurhanewicz, J., and Vigneron, D.B. (2008) Multiband excitation pulses for hyperpolarized 13C dynamic chemical-shift imaging. J. Magn. Reson. 194, 121–127.

    Article  PubMed  CAS  Google Scholar 

  32. Chen, A.P., Tropp, J., Hurd, R.E., Van Criekinge, M., Carvajal, L.G., Xu, D., Kurhanewics, J., and Vigneron, D.B. (2009) In vivo hyperpolarized 13C MR spectroscopic imaging with 1H decoupling. J. Magn. Reson. 197, 100–106.

    Article  PubMed  CAS  Google Scholar 

  33. Ljunggren, S. (1983) A simple graphical representation of Fourier-based imaging methods. J. Magn. Reson. 54, 338–343.

    Google Scholar 

  34. Ahn, C.B., Kim, J.H., and Cho, Z.H. (1986) High-speed spiral-scan echo planar NMR imaging. IEEE Trans. Med. Imaging 5, 2–7.

    Article  PubMed  CAS  Google Scholar 

  35. Levin, Y.S., Mayer, D., Yen, Y.-F., Hurd, R.E., and Spielman, D.M. (2007) Optimization of fast spiral chemical shift imaging using least squares reconstruction: application for hyperpolarized 13C metabolic imaging. Magn. Reson. Med. 58, 245–252.

    Article  PubMed  CAS  Google Scholar 

  36. Mayer, D., Yen, Y.-F., Tropp, J., Pfefferbaum, A., Hurd, R.E., and Spielman, D.M. (2009) Application of subsecond spiral chemical shift imaging to real-time multislice metabolic imaging of the rat in vivo after injection of hyperpolarized 13C1-pyruvate. Magn. Reson. Med. 62, 557–564.

    Article  PubMed  CAS  Google Scholar 

  37. Cunningham C.H., Chen, A.P., Lustig, M., Hargreaves, B.A., Lupo, J., Xu, D., Kurhanewics, J., Hurd, R.E., Pauly, J.M., Nelson, S.J., and Vigneron, D.B. (2008) Pulse sequence for dynamic volumetric imaging of hyperpolarized metabolic products. J. Magn. Reson. 193, 139–146.

    Article  PubMed  CAS  Google Scholar 

  38. Leupold, J., Wieben, O., Månsson, S., Speck, O., Scheffler, K., Petersson, J.S., and Hennig J. (2006) Fast chemical shift mapping with multiecho balanced SSFP. MAGMA 19, 267–273.

    Article  PubMed  CAS  Google Scholar 

  39. Vinitski, S., Mitchell, D.G., Szumowski, J., Burk, D.L., and Rifkin, M.D. (1990) Variable flip angle imaging and fat suppression in combined gradient and spin-echo (GREASE) techniques. Magn. Reson. Imaging 8, 131–139.

    Article  PubMed  CAS  Google Scholar 

  40. Dixon, W.T. (1984) Simple proton spectroscopic imaging. Radiology 153, 189–194.

    PubMed  CAS  Google Scholar 

  41. Glover, G.H. (1991) Multipoint Dixon technique for water and fat proton and susceptibility imaging. J. Magn. Reson. Imaging 1, 521–530.

    Article  PubMed  CAS  Google Scholar 

  42. Reeder, S.B., Wen, Z., Yu, H., Angel, A.R., et al. (2004) Multicoil Dixon chemical species separation with an iterative least-squares estimation method. Magn. Reson. Med. 51, 35–45.

    Article  PubMed  CAS  Google Scholar 

  43. Leupold, J., Månsson, S., Petersson, J.S., Hennig, J., and Wieben, O. (2009) Fast multiecho balanced SSFP metabolite mapping (1)H and hyperpolarized (13)C compounds. MAGMA 22, 251–256.

    Article  PubMed  CAS  Google Scholar 

  44. Golman, K., Axelsson, O., Jóhannesson, H., Månsson, S., Olofsson, C., and Petersson, J.S. (2001) Parahydrogen-induced polarization in imaging: subsecond (13)C angiography. Magn. Reson. Med. 46, 1–5.

    Article  PubMed  CAS  Google Scholar 

  45. Golman, K., Ardenkjær-Larsen, J.H., Svensson, J., et al. (2002) (13)C-angiography. Acad. Radiol. 2, 507–510.

    Article  Google Scholar 

  46. Golman, K., Ardenkjær-Larsen, J.H., Petersson, J. S., Månsson, S., and Leunbach, I. (2003) Molecular imaging with endogenous substances. Proc. Natl. Acad. Sci. U.S.A. 100, 10435–10439.

    Article  PubMed  CAS  Google Scholar 

  47. Magnusson, P., Johansson, E., Månsson, S., Petersson, J.S., et al. (2007) Passive catheter tracking during interventional MRI using hyperpolarized (13)C. Magn. Reson. Med. 57, 1140–1147.

    Article  PubMed  Google Scholar 

  48. Østergaard, L., Weisskoff, R.M., Chesler, D.A., Gyldensted, C., and Rosen, B.R. (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn. Reson. Med. 36, 715–725.

    Article  PubMed  Google Scholar 

  49. Østergaard, L., Sorensen, A.G., Kwong, K.K., Weisskoff, R.M., Gyldensted, C., and Rosen, B.R. (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: Experimental comparison and preliminary results. Magn. Reson. Med. 36, 726–736.

    Article  PubMed  Google Scholar 

  50. Johansson, E. (2003) NMR imaging of flow and perfusion using hyperpolarized nuclei. PhD thesis, Lund University, Lund.

    Google Scholar 

  51. Johansson, E., Månsson, S., Wirenstam, R., Svensson, J., Petersson, J.S., Golman, K., and Ståhlberg, F. (2004) Cerebral perfusion assessment by bolus tracking using hyperpolarized (13)C. Magn. Reson. Med. 51, 464–472.

    Article  PubMed  CAS  Google Scholar 

  52. Meier, P. and Zierler, K. (1954) On the theory of the indicator-dilution method for assessment of blood flow and volume. J. Appl. Physiol. 6, 731–744.

    PubMed  CAS  Google Scholar 

  53. Goodson, B.M., Song, Y.Q., Taylor, R.E., et al. (1997) In vivo NMR and MRI using injection delivery of laser-polarized xenon. Proc. Natl. Acad. Sci. U.S.A. 94, 14725–14729.

    Article  PubMed  CAS  Google Scholar 

  54. Duhamel, G., Choquet, P., Grillon, E., et al. (2002) Global and regional cerebral blood flow measurements using NMR of injected hyperpolarized Xenon-129. Acad. Radiol. 9, 498–500.

    Article  Google Scholar 

  55. Kety, S.S. (1949) Measurements of regional circulation by the local clearance of radioactive sodium. Am. Heart J. 38, 321–328.

    Article  PubMed  CAS  Google Scholar 

  56. Kety, S.S. (1951) The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol. Rev. 3, 1–41.

    PubMed  CAS  Google Scholar 

  57. Peled, S., Jolesz, F.A., Tseng, C.H., Nascimben, L., Albert, M.S., and Walsworth R.L. (1996) Determinants of tissue delivery for (129)Xe magnetic resonance in humans. Magn. Reson. Med. 36, 340–344.

    Article  PubMed  CAS  Google Scholar 

  58. Martin, C.C., Williams, R.F., Gao, J.H., Nickerson, L.D.H., Xiong, J., and Fox, P.T. (1997) The pharmacokinetics of hyperpolarized xenon: implications for cerebral MRI. J. Magn. Reson Imaging 7, 848–854.

    Article  PubMed  CAS  Google Scholar 

  59. Lavini, C., Payne, G.S., Leach, M.O., and Bifone, A. (2000) Intravenous delivery of hyperpolarized (129)Xe: a compartmental model. NMR Biomed. 13, 238–244.

    Article  PubMed  CAS  Google Scholar 

  60. Killian, W., Seifert, F., and Rinneberg, H. (2002) Time resolved (129)Xe spectroscopy of human brain after inhaling hyperpolarized xenon gas. Proc. Intl. Soc. Mag. Reson. Med.

    Google Scholar 

  61. Johansson, E., Olsson, L.E., Månsson, S., Petersson, J.S., Golman, K., Ståhlberg, F., and Wirenstam, R. (2004) Perfusion assessment with bolus differentiation: a technique applicable to hyperpolarized tracers. Magn. Reson. Med. 52, 1043–1051.

    Article  PubMed  CAS  Google Scholar 

  62. Golman, K., in’t Zandt, R., and Thaning, M. (2006) Real-time metabolic imaging. PNAS. 103, 11270–11275.

    Article  PubMed  CAS  Google Scholar 

  63. Golman, K., in’t Zandt, R., Lerche, .M, Pehrson, R., and Ardenkjaer-Larsen, J.H. (2006) Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res. 66, 10855–10860.

    Article  PubMed  CAS  Google Scholar 

  64. Day, S.E., Kettunen, M.I., Gallagher, F.A., Hu, D.E., Lerche, M., Wolber, J., Golman, K., Ardenkjaer-Larsen, J.H., and Brindle, K.M. (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat. Med. 13, 1382–1387.

    Article  PubMed  CAS  Google Scholar 

  65. Berg, J.M., Tymoczko, J.L., and Stryer, L. (2007) Biochemistry, sixth edition, W.H. Freeman and Company, New York, USA.

    Google Scholar 

  66. Gatenby, R.A. and Gillies, R.J. (2004). Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899.

    Article  PubMed  CAS  Google Scholar 

  67. Yagi, G. and Hoberman, H.D. (1969) Rate of isotope exchange in enzyme-catalyzed reactions. Biochemistry 8, 352–360.

    Article  Google Scholar 

  68. Borgmann, U., Moon, T.W. and Laidler, K.J. (1974) Molecular kinetics of beef heart lactate dehydrogenase. Biochemistry 13, 5152–5158.

    Article  PubMed  CAS  Google Scholar 

  69. Poole, R.C. and Halestrap, A.P. (1993) Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am. J. Physiol. 264, 761–782.

    Google Scholar 

  70. Jackson, V.N. and Halestrap, A.P. (1996) The kinetic, substrate and inhibitor specificity of the monocarboxylate (lactate) transporter of rat liver cells determined using the fluorescent intracellular pH indicator 2’,7’-Bis(carboxyethyl)-5(6)-carboxyfluorescein. J. Biol. Chem. 271, 861–868.

    Article  PubMed  CAS  Google Scholar 

  71. Lin, R.Y., Vera, J.C., Chaganti, R.S.K., and Golde, D.W. (1998) Human monocarboxylate transporter 2 (MCT2) is a high affinity pyruvate transporter. J. Biol. Chem. 273, 28959–28965.

    Article  PubMed  CAS  Google Scholar 

  72. Brindle, K.M. (1988) NMR methods for measuring enzyme kinetics in vivo. Prog. Nucl. Magn. Reson. Spectrosc. 20, 257–293.

    Article  CAS  Google Scholar 

  73. Day, S.E., Kettunen, M.I., Gallagher, F.A., Hu, D.-E., Lerche, M., Wolber, J., Golman, K., Ardenkjaer-Larsen, J.H., and Brindle, K.M. (2007). Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat. Med. 13, 1382–1387.

    Article  PubMed  CAS  Google Scholar 

  74. Zierhut, M.L., Yen, Y.F., Chen, A.P., Bok, R., Albers, M.J., Zhang, V., Tropp, J., Park, I., Vigneron, D.B., Kurhanewicz, J., Hurd, R.E., and Nelson, S.J. (2010) Kinetic modeling of hyperpolarized 13C1-pyruvate metabolism in normal rats and TRAMP mice. J. Magn. Reson. 202, 85–92.

    Article  PubMed  CAS  Google Scholar 

  75. Spielman, D.M., Mayer, D., Yen, Y.F., Tropp, J., Hurd, R.E., and Pfefferbaum, A. (2009) In vivo measurement of ethanol metabolism in the rat liver using magnetic resonance spectroscopy of hyperpolarized [1-13C]pyruvate. Magn. Reson. Med. 62, 307–313.

    Article  PubMed  CAS  Google Scholar 

  76. Naressi, A., Couturier, C., Devos, J.M., Janssen, M., Mangeat, C., de Beer, R., and Graveron-Demilly, D. (2001) Java-based graphical user interface for the MRUI quantitation package. Magn. Reson. Mater. Biol., Phys., Med. 12, 141–152.

    Article  CAS  Google Scholar 

  77. http://s-provencher.com/pages/lcmodel.shtml.

  78. Shaw, R.J. (2006). Glucose metabolism and cancer. Curr. Opin. Cell Biol. 18, 598–608.

    Article  PubMed  CAS  Google Scholar 

  79. Meisamy, S., Bolan, P.J., Baker, E.H., Bliss, R.L., Gulbahce, E., Everson, L.I., Nelson, M.T., Emory, T.H., Tuttle, T.M., Yee, D., et al. (2004). Neoadjuvant chemotherapy of locally advanced breast cancer: predicting response with in vivo H-1 MR spectroscopy – A pilot study. Radiology 233, 424–431.

    Article  PubMed  Google Scholar 

  80. Kurhanewicz, J., Vigneron, D.B., and Nelson, S.J. (2000). Three-dimensional magnetic resonance spectroscopic imaging of brain and prostate cancer. Neoplasia 2, 166–189.

    Article  PubMed  CAS  Google Scholar 

  81. Aboagye, E.O., Bhujwalla, Z.M., Shungu, D.C., and Glickson, J.D. (1998). Detection of tumour response to chemotherapy by 1H nuclear magnetic resonance spectroscopy: effect of 5-fluorouracil on lactate levels in radiation-induced fibrosarcoma in tumours. Cancer Res. 58, 1063–1067.

    PubMed  CAS  Google Scholar 

  82. Veech, R.L., Lawson, J.W.R., Cornell, N.W., and Krebs, H.A. (1979) Cytosolic phosphorylation potential. J. Biol. Chem. 254, 6538–6547.

    PubMed  CAS  Google Scholar 

  83. Silverstein, E. and Boyer, P.D. (1964) Equilibrium reaction rates and the mechanism of bovine heart and rabbit muscle lactate dehydrogenase. J. Biol. Chem. 239, 3901–3907.

    PubMed  CAS  Google Scholar 

  84. Williams, S.N.O., Anthony, M.L., and Brindle, K.M. (1998) Induction of apoptosis in two mammalian cell lines results in increased levels of fructose-1,6-bisphosphate and CDP-choline as determined by 31P MRS. Magn. Reson. Med. 40, 411–420.

    Article  PubMed  CAS  Google Scholar 

  85. Witney, T.H., Kettunen, M.I., Day, S.E., Hu, D., Neves, A.A., Gallagher, F.A., Fulton, S.M., and Brindle, K.M. (2009) A comparison between radiolabeled fluorodeoxyglucose uptake and hyperpolarized 13C-labeled pyruvate utilization as methods for detecting tumor response to treatment. Neoplasia 11, 574–582.

    PubMed  CAS  Google Scholar 

  86. Moffat, B.A., Chenevert, T.L., Lawrence, T.S., Meyer, C.R., Johnson, T.D., Dong, Q., Tsien, C., Mukherji, S., Quint, D.J., Gebarski, S.S., et al. (2005). Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc. Natl. Acad. Sci. U.S.A. 102, 5524–5529.

    Article  PubMed  CAS  Google Scholar 

  87. Albers, M.J., Bok, R., Chen, A.P., Cunningham, C.H., et al. (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res. 68, 8607–8615.

    Article  PubMed  CAS  Google Scholar 

  88. Bode, B.P. and Souba, W.W. (1994) Modulation of cellular proliferation alters glutamine transport and metabolism in human hepatoma cells. Ann. Surg. 220, 411–422.

    Article  PubMed  CAS  Google Scholar 

  89. Reitzer, L.J., Wice, B.M., and Kennell, D. (1979) Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J. Biol. Chem. 254, 2669–2676.

    PubMed  CAS  Google Scholar 

  90. Gallagher, F.A., Kettunen, M.I., Day, S.E., Lerche, M., and Brindle K.M. (2008) 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn. Reson. Med. 60, 253–257.

    Article  PubMed  CAS  Google Scholar 

  91. Keshari, K.R., Wilson, D.M., Chen, A.P., Bok, R., Larson, P.E.Z., Hu, S., Van Criekinge, M., Macdonald, J.M., Vigneron, D.B., and Kurhanewicz, J. (2009) Hyperpolarized [2-13C]-fructose: a hemiketal DNP substrate for in vivo metabolic imaging. J. Am. Chem. Soc. Online.

    Google Scholar 

  92. Karlsson, M., Jensen, P.R., in’t Zandt, R., Gisselsson, A., Hansson, G., Duus, J.Ø., Meier, S., and Lerche, M.H. (2009) Imaging of branched chain amino acid metabolism in tumors with hyperpolarized 13C ketoisocaproate. Inter. J. Cancer. Online.

    Google Scholar 

  93. Panchal, A.R., Comte, B., Huang, H., Kerwin, T., Darvish, A., Des Rosiers, C., Brunengraber, H., and Stanley, W.C. (2000). Partitioning of pyruvate between oxidation and anaplerosis in swine hearts. Am. J. Physiol. Heart Circ. Physiol. 279, 2390–2398.

    Google Scholar 

  94. Panchal, A.R., Comte, B., Huang, H., Dudar, B., Roth, B., Chandler, M., Des Rosiers, C., Brunengraber, H., and Stanley, W.C. (2001). Acute hibernation decreases myocardial pyruvate carboxylation and citrate release. Am. J. Physiol. Heart Circ. Physiol. 281, 1613–1620.

    Google Scholar 

  95. Mallet, R.T. (2000) Pyruvate: metabolic protector of cardiac performance. Proc. Soc. Exp. Biol. Med. 223, 136–148.

    Article  PubMed  CAS  Google Scholar 

  96. Mallet, R.T., Sun, J., Knott, E.M., Sharma, A.B., and Olivencia-Yurvati, A.H. (2005) Metabolic cardioprotection by pyruvate: recent progress. Exp. Biol. Med. 230, 435–443.

    CAS  Google Scholar 

  97. Schroeder, M.A., Atherton, H.J., Cochlin, L.E., Clarke, K., Radda, G.K., and Tyler, D.J. (2009) The effect of hyperpolarized tracer concentration on myocardial uptake and metabolism. Magn. Reson. Med. 61, 1007–1014.

    Article  PubMed  CAS  Google Scholar 

  98. Tyler, D.J., Schroeder, M.A., Cochlin, L.E., Clarke, K., and Radda, G.K (2008) Applications of hyperpolarized magnetic resonance in the study of cardiac metabolism. Appl. Magn. Reson. 34, 523–531.

    Article  CAS  Google Scholar 

  99. Merritt, M.E., Harrison, C., Storey, C., Jeffrey, F.M., Sherry, A.D., and Malloy, C.R. (2007) Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR. Proc. Natl. Acad. Sci. U.S.A. 104, 19773–19777.

    Article  PubMed  CAS  Google Scholar 

  100. Merritt, M.E., Harrison, C., Storey, C., Sherry, A.D., and Malloy, C.R. (2008) Inhibition of carbohydrate oxidation during the first minute of reperfusion after brief ischemia: NMR detection of hyperpolarized 13CO2 and H13CO3. Magn. Reson. Med. 60, 1029–1036.

    Article  PubMed  CAS  Google Scholar 

  101. Schroeder, M.A., Cochlin, L.E., Heather, L.C., Clarke, K., Radda, G.K., and Tyler, D.J. (2008) In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance. Proc. Natl. Acad. Sci. U.S.A. 105, 12051–12056.

    Article  PubMed  CAS  Google Scholar 

  102. Stanley, W.C., Recchia, F.A., and Lopaschuk, G.D. (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85, 1093–1129.

    Article  PubMed  CAS  Google Scholar 

  103. Jager, P.L., Vaalburg, W., Pruim, J., de Vries, E.G.E., Langen, K.J., and Piers, D.A. (2001). Radiolabeled amino acids: basic aspects and clinical applications in oncology. J. Nucl. Med. 42, 432–445.

    PubMed  CAS  Google Scholar 

  104. Schroeder, M.A., Atherton, H.J., Ball, D.R., Cole, M.A., Heather, L.C., Griffin, J.L., Clarke, K., Radda, G.K., and Tyler, D.J. (2009) Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy. The FASEB J. 23.

    Google Scholar 

  105. Michaelis, T., Boretius, S., and Frahm, J. (2009) Localized proton MRS of animal brain in vivo: models of human disorders. Progr. Nucl. Magn. Reson. Spectrosc. 55, 1–34.

    Article  CAS  Google Scholar 

  106. Tran, T., Ross, B., and Lin, A. (2009) Magnetic resonance spectroscopy in neurological diagnosis. Neurologic Clinics 27, 21–60.

    Article  PubMed  Google Scholar 

  107. Bhattacharya, P., Chekmenev, E.Y., Perman, W.H., Harris, K.C., Lin, A.P., Norton, V.A., Tan, C.T., Ross, B.D., and Weitekamp, D.P. (2007) Towards hyperpolarized 13C-succinate imaging of brain cancer. J. Magn. Reson. 186, 150–155.

    Article  PubMed  CAS  Google Scholar 

  108. Hurd, R.E, Yen,Y-F, Mayer, D., Chen, A., Wilson, D., Kohler, S., Bok, R., Vigneron, D., Kurhanewicz, J., Tropp, J., Spielman, D., and Pfefferbaum, A. (2010) Metabolic imaging in the anesthetized rat brain using hyperpolarized [1-13C] pyruvate and [1-13C] ethyl pyruvate. Magn. Reson. Med. 63, 1137–1143.

    Article  PubMed  CAS  Google Scholar 

  109. Spielman, D.M., Mayer, D., Yen, Y.F., Tropp, J., Hurd, R.E., and Pfefferbaum, A. (2009) In vivo measurement of ethanol metabolism in the rat liver using magnetic resonance spectroscopy of hyperpolarized [1-13C]pyruvate. Magn. Reson. Med. 62, 307–313.

    Article  PubMed  CAS  Google Scholar 

  110. Gallagher, F.A., Kettunen, M.I., Day, S.E., Hu, D.E., Ardenkjaer-Larsen, J.H., Zandt, R., Jensen, P.R., Karlsson, M., Golman, K., Lerche, M.H., and Brindle, K.M. (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453, 940–944.

    Article  PubMed  CAS  Google Scholar 

  111. Adrogué, H.G., Gennari, F.J., Galla, J.H., and Madias, N.E. (2009) Assessing acid–base disorders. Kidney Int. 76, 1239–1247.

    Article  PubMed  CAS  Google Scholar 

  112. Casey, J.R., Grinstein, S., and Orlowski, J. (2010) Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50–61.

    Article  PubMed  CAS  Google Scholar 

  113. Raghunand, N., He, X., van Sluis, R., Mahoney, B., Baggett, B., Taylor, C.W., Paine-Murrieta, G., Roe, D., Bhujwalla, Z.M., and Gillies, R.J. (1999) Enhancement of chemotherapy by manipulation of tumour pH. Br. J. Cancer 80, 1005–1011.

    Article  PubMed  CAS  Google Scholar 

  114. Robey, I.F., Baggett, B.K., Kirkpatrick, N.D., Roe, D.J., Dosescu, J., Sloane, B.F., Hashim, A.I., Morse, D.L., Raghunand, N., Gatenby, R.A., and Gillies, R.J. (2009) Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res. 69, 2260–2268.

    Article  PubMed  CAS  Google Scholar 

  115. Gillies, R.J., Raghunand, N., Garcia-Martin, M.L., and Gatenby, R.A. (2004) pH imaging: a review of pH measurement methods and applications in cancers. IEEE Eng. Med. Biol. Mag. 23, 57–64.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Henrik Ardenkjaer-Larsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ardenkjaer-Larsen, J.H., Jóhannesson, H., Petersson, J.S., Wolber, J. (2011). Applications of Hyperpolarized Agents in Solutions. In: Schröder, L., Faber, C. (eds) In vivo NMR Imaging. Methods in Molecular Biology, vol 771. Humana Press. https://doi.org/10.1007/978-1-61779-219-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-219-9_33

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-218-2

  • Online ISBN: 978-1-61779-219-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics