Skip to main content

Experimental Stroke Research: The Contributions of In Vivo MRI

  • Protocol
  • First Online:
  • 2385 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 771))

Abstract

Stroke is a disease that develops from the very acute time point of first symptoms during the next several hours and further to a chronic time period of days or even weeks. During this evolution process, a whole series of pathophysiological events takes place. Therefore, the disease is characterized by a continuously changing pathophysiological pattern. In consequence, as the disease develops over time, different imaging modalities must be chosen to accurately describe the status of stroke. In the present chapter, we have divided the evolution of stroke into various dominant steps of the cascade of events, with corresponding time windows. Choice of MRI variables for depiction of the most important aspects during these time windows are presented and their information content is discussed for diagnosis and for investigations into a better understanding of the underlying mechanisms for the disease as well as the relevance of these imaging tools in success assessments for therapeutic strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Latchaw, R. E., Alberts, M. J., Lev, M. H., Connors, J. J., Harbaugh, R. E., Higashida, R. T., Hobson, R., Kidwell, C. S., Koroshetz, W. J., Mathews, V., Villablanca, P., Warach, S. and Walters, B. (2009) Recommendations for imaging of acute ischemic stroke. A scientific statement from the American Heart Association. Stroke 40, 3646–3678.

    Google Scholar 

  2. Murray, C. J. and Lopez, A. D. (1997) Global mortality, disability, and the contribution of risk factors: Global burden of disease study. Lancet 349, 1436–1442.

    Article  PubMed  CAS  Google Scholar 

  3. Lipton, P. (1999) Ischemic cell death in brain neurons. Physiol. Rev. 79, 1431–1568.

    PubMed  CAS  Google Scholar 

  4. Astrup, J., Siesjo, B. K. and Symon, L. (1981) Thresholds in cerebral ischemia – the ischemic penumbra. Stroke 12, 723–725.

    Article  PubMed  CAS  Google Scholar 

  5. Astrup, J., Symon, L., Branston, N. M. and Lassen, N. A. (1977) Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8, 51–57.

    Article  PubMed  CAS  Google Scholar 

  6. Dirnagl, U., Iadecola, C. and Moskowitz, M. A. (1999) Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci. 22, 391–397.

    Article  PubMed  CAS  Google Scholar 

  7. Hossmann, K.-A. (1998) Thresholds of ischemic injury. In: M. D. Ginsberg and J. Bogousslavsky (eds.), Cerebrovascular Disease: Pathophysiology, Diagnosis and Management, pp. 193–204. Blackwell Science, Cambridge, MA.

    Google Scholar 

  8. Fatahzadeh, M. and Glick, M. (2006) Stroke: Epidemiology, classification, risk factors, complications, diagnosis, prevention, and medical and dental management. Oral Surg., Oral Med., Oral Pathol., Oral Radiol. and Endod. 102, 180–191.

    Article  Google Scholar 

  9. National Institute of Neurological Disorders and Stroke, r.-P. S. S. G. (1995) Tissue plasminogen activator for acute ischemic stroke. New Engl. J. Med. 333, 1581–1587.

    Article  Google Scholar 

  10. Smith, W. S., Sung, G., Starkman, S., Saver, J. L., Kidwell, C. S., Gobin, Y. P., Lutsep, H. L., Nesbit, G. M., Grobelny, T., Rymer, M. M., Silverman, I. E., Higashida, R. T., Budzik, R. F. and Marks, M. P. (2005) Safety and efficacy of mechanical embolectomy in acute ischemic stroke: Results of the MERCI trial. Stroke 36, 1432–1438.

    Article  PubMed  Google Scholar 

  11. Hossmann, K.-A. (2008) Cerebral ischemia: models, methods and outcomes. Neuropharmacology 55, 257–270.

    Article  PubMed  CAS  Google Scholar 

  12. Tamura, A., Graham, D. I., McCulloch, J. and Teasdale, G. M. (1981) Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J. Cerebr. Blood Flow Metab. 1, 53–60.

    Article  CAS  Google Scholar 

  13. Kudo, M., Aoyama, A., Ichimori, S. and Fukunaga, N. (1982) An animal model of cerebral infarction. Homologous blood clot emboli in rats. Stroke 13, 505–508.

    Article  PubMed  CAS  Google Scholar 

  14. Koizumi, J., Yoshida, Y., Nakazawa, T. and Ooneda, G. (1986) Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in wich recirculation can be introduced in the ischemic area. Japanese J. Stroke 8, 1–8.

    Article  Google Scholar 

  15. Siesjö, B., Kristian, T. and Katsura, K. (1998) Overview of bioenergetic failure and metabolic cascades in brain ischemia. In: M. D. Ginsberg and J. Bogousslavsky (eds.), Cerebrovascular Disease: Pathophysiology, Diagnosis and Management, pp. 1–13. Blackwell Science, Cambridge, MA.

    Google Scholar 

  16. Wu, A. and Fujikawa, D. G. (2002) Effects of AMPA-receptor and voltage-sensitive sodium channel blockade on high potassium-induced glutamate release and neuronal death in vivo. Brain Res. 946, 119–129.

    Article  PubMed  CAS  Google Scholar 

  17. Hara, M. R. and Snyder, S. H. (2007) Cell signaling and neuronal death. Annu. Rev. Pharm. Tox. 47, 117–141.

    Article  CAS  Google Scholar 

  18. Siesjo, B. K., Hu, B. and Kristian, T. (1999) Is the cell death pathway triggered by the mitochondrion or the endoplasmic reticulum? J. Cerebr. Blood Flow Metabol. 19, 19–26.

    Article  CAS  Google Scholar 

  19. Samdani, A. F., Dawson, T. M. and Dawson, V. L. (1997) Nitric oxide synthase in models of focal ischemia. Stroke 28, 1283–1288.

    Article  PubMed  CAS  Google Scholar 

  20. White, B. C., Sullivan, J. M., DeGracia, D. J., O’Neil, B. J., Neumar, R. W., Grossman, L. I., Rafols, J. A. and Krause, G. S. (2000) Brain ischemia and reperfusion: Molecular mechanisms of neuronal injury. J. Neurol. Sci. 179, 1–33.

    Article  PubMed  CAS  Google Scholar 

  21. Choi, D. W. (1994) Calcium and excitotoxic neuronal injury. Ann. N. Y. Acad. Sci. 747, 162–171.

    Article  PubMed  CAS  Google Scholar 

  22. Artal-Sanz, M. and Tavernarakis, N. (2005) Proteolytic mechanisms in necrotic cell death and neurodegeneration. FEBS Lett. 579, 3287–3296.

    Article  PubMed  CAS  Google Scholar 

  23. Leker, R. R. and Shohami, E. (2002) Cerebral ischemia and trauma – different etiologies yet similar mechanisms: Neuroprotective opportunities. Brain Res. and Brain Res. Rev. 39, 55–73.

    Article  Google Scholar 

  24. Nedergaard, M. and Hansen, A. J. (1993) Characterization of cortical depolarizations evoked in focal cerebral ischemia. J. Cerebr. Blood Flow Metabol. 13, 568–574.

    Article  CAS  Google Scholar 

  25. Mies, G., Iijima, T. and Hossmann, K.-A. (1993) Correlation between peri-infarct DC shifts and ischaemic neuronal damage in rat. Neuroreport 4, 709–711.

    Article  PubMed  CAS  Google Scholar 

  26. Busch, E., Gyngell, M. L., Eis, M., Hoehn-Berlage, M. and Hossmann, K.-A. (1996) Potassium induced cortical spreading depressions during focal cerebral ischemia in rats: Contribution to lesion growth assessed by diffusion-weighted NMR and biochemical imaging. J. Cerebr. Blood Flow Metabol. 16, 1090–1099.

    Article  CAS  Google Scholar 

  27. Busch, E., Hoehn-Berlage, M., Eis, M., Gyngell, M. L. and Hossmann, K.-A. (1995) Simultaneous recording of EEG, DC potential and diffusion-weighted NMR imaging during potassium induced cortical spreading depression in rats. NMR Biomed. 8, 59–64.

    Article  PubMed  CAS  Google Scholar 

  28. Beckmann, N., Stirnimann, R. and Bochelen, D. (1999) High-resolution magnetic resonance angiography of the mouse brain: Application to murine focal cerebral ischemia models. J. Magn. Reson. 140, 442–450.

    Article  PubMed  CAS  Google Scholar 

  29. Besselmann, M., Liu, M., Diedenhofen, M., Franke, C. and Hoehn, M. (2001) MR angiographic investigation of transient focal cerebral ischemia in rat. NMR Biomed. 14, 289–296.

    Article  PubMed  CAS  Google Scholar 

  30. Reese, T., Bochelen, D., Sauter, A., Beckmann, N. and Rudin, M. (1999) Magnetic resonance angiography of the rat cerebrovascular system without the use of contrast agents. NMR Biomed. 12, 189–196.

    Article  PubMed  CAS  Google Scholar 

  31. Hilger, T., Niessen, F., Diedenhofen, M., Hossmann, K.-A. and Hoehn, M. (2002) Magnetic resonance angiography of thromboembolic stroke in rats: Indicator of recanalization probability and tissue survival after recombinant tissue plasminogen activator treatment. J. Cerebr. Blood Flow Metabol. 22, 652–662.

    Article  Google Scholar 

  32. Calamante, F., Thomas, D. L., Pell, G. S., Wiersma, J. and Turner, R. (1999) Measuring cerebral blood flow using magnetic resonance imaging techniques. J. Cerebr. Blood Flow Metabol. 19, 701–735.

    Article  CAS  Google Scholar 

  33. Dijkhuizen, R. M. and Nicolay, K. (2003) Magnetic resonance imaging in experimental models of brain disorders. J. Cerebr. Blood Flow Metabol. 23, 1383–1402.

    Article  Google Scholar 

  34. Wittlich, F., Kohno, K., Mies, G., Norris, D. G. and Hoehn-Berlage, M. (1995) Quantitative measurement of regional blood flow with gadolinium diethylenetriaminepentaacetate bolus track NMR imaging in cerebral infarcts in rats: Validation with the iodo[14C]antipyrine technique. Proc. Natl. Acad. Sci. USA 92, 1846–1850.

    Article  PubMed  CAS  Google Scholar 

  35. Detre, J. A., Leigh, J. S., Williams, D. S. and Koretsky, A. P. (1992) Perfusion imaging. Magn. Reson. Med. 23, 37–45.

    Article  PubMed  CAS  Google Scholar 

  36. Kim, S. G. (1995) Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn. Reson. Med. 34, 293–301.

    Article  PubMed  CAS  Google Scholar 

  37. Busch, E., Krüger, K., Allegrini, P. R., Kerskens, C. M., Gyngell, M. L., Hoehn-Berlage, M. and Hossmann, K.-A. (1998) Reperfusion after thrombolytic therapy of embolic stroke in the rat: Magnetic resonance and biochemical imaging. J. Cerebr. Blood Flow Metabol. 18, 407–418.

    Article  CAS  Google Scholar 

  38. Wells, J. A., Lythgoe, M. F., Choy, M., Gadian, D. G., Ordidge, R. J. and Thomas, D. L. (2009) Characterizing the origin of the arterial spin labelling signal in MRI using a multiecho acquisition approach. J. Cerebr. Blood Flow Metabol. 29, 1836–1845.

    Article  Google Scholar 

  39. Buxton, R. B., Frank, L. R., Wong, E. C., Siewert, B., Warach, S. and Edelman, R. R. (1998) A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn. Reson. Med. 40, 383–396.

    Article  PubMed  CAS  Google Scholar 

  40. Hamberg, L. M., Boccalini, P., Stranjalis, G., Hunter, G. J., Huang, Z., Halpern, E., Weisskoff, R. M., Moskowitz, M. A. and Rosen, B. R. (1996) Continuous assessment of relative cerebral blood volume in transient ischemia using steady state susceptibility-contrast MRI. Magn. Reson. Med. 35, 168–173.

    Article  PubMed  CAS  Google Scholar 

  41. Zaharchuk, G., Yamada, M., Sasamata, M., Jenkins, B. G., Moskowitz, M. A. and Rosen, B. R. (2000) Is all perfusion-weighted magnetic resonance imaging for stroke equal? The temporal evolution of multiple hemodynamic parameters after focal ischemia in rats correlated with evidence of infarction. J. Cerebr. Blood Flow Metabol. 20, 1341–1351.

    Article  CAS  Google Scholar 

  42. Dennie, J., Mandeville, J. B., Boxerman, J. L., Packard, S. D., Rosen, B. R. and Weisskoff, R. M. (1998) NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn. Reson. Med. 40, 793–799.

    Article  PubMed  CAS  Google Scholar 

  43. Hjort, N., Butcher, K., Davis, S. M., Kidwell, C. S., Koroshetz, W. J., Rother, J., Schellinger, P. D., Warach, S. and Ostergaard, L. (2005) Magnetic resonance imaging criteria for thrombolysis in acute cerebral infarct. Stroke 36, 388–397.

    Article  PubMed  CAS  Google Scholar 

  44. Pantano, P., Totaro, P. and Raz, E. (2008) Cerebrovascular diseases. Neurol. Sci. 29(Suppl 3), 314–318.

    Article  PubMed  Google Scholar 

  45. Baird, A. E., Benfield, A., Schlaug, G., Siewert, B., Lovblad, K. O., Edelman, R. R. and Warach, S. (1997) Enlargement of human cerebral ischemic lesion volumes measured by diffusion-weighted magnetic resonance imaging. Ann. Neurol. 41, 581–589.

    Article  PubMed  CAS  Google Scholar 

  46. Le Bihan, D., Breton, E., Lallemand, D., Aubin, M. L., Vignaud, J. and Laval-Jeantet, M. (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168, 497–505.

    PubMed  CAS  Google Scholar 

  47. Benveniste, H., Hedlund, L. W. and Johnson, G. A. (1992) Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke 23, 746–754.

    Article  PubMed  CAS  Google Scholar 

  48. Moseley, M. E., Cohen, Y., Mintorovitch, J., Chileuitt, L., Shimizu, H., Kucharczyk, J., Wendland, M. F. and Weinstein, P. R. (1990) Early detection of regional cerebral ischemia in cats: Comparison of diffusion- and T 2-weighted MRI and spectroscopy. Magn. Reson. Med. 14, 330–346.

    Article  PubMed  CAS  Google Scholar 

  49. Hoehn-Berlage, M. (1995) Diffusion-weighted NMR imaging: application to experimental focal cerebral ischemia. NMR Biomed. 8, 345–358.

    Article  PubMed  CAS  Google Scholar 

  50. Norris, D. G. (2001) The effects of microscopic tissue parameters on the diffusion weighted magnetic resonance imaging experiment. NMR Biomed. 14, 77–93.

    Article  PubMed  CAS  Google Scholar 

  51. Hoehn-Berlage, M., Norris, D. G., Kohno, K., Mies, G., Leibfritz, D. and Hossmann, K.-A. (1995) Evolution of regional changes in apparent diffusion coefficient during focal ischemia of rat brain: The relationship of quantitative diffusion NMR imaging to reduction in cerebral blood flow and metabolic disturbances. J. Cerebr. Blood Flow Metabol. 15, 1002–1011.

    Article  CAS  Google Scholar 

  52. Hossmann, K.-A. (2006) Pathophysiology and therapy of experimental stroke. Cell. Mol. Neurobiol. 26, 1057–1083.

    Article  PubMed  Google Scholar 

  53. Sotak, C. H. (2004) Nuclear magnetic resonance (NMR) measurement of the apparent diffusion coefficient (ADC) of tissue water and its relationship to cell volume changes in pathological states. Neurochem. Int. 45, 569–582.

    Article  PubMed  CAS  Google Scholar 

  54. Zoli, M., Jansson, A., Sykova, E., Agnati, L. F. and Fuxe, K. (1999) Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends Pharmacol. Sci. 20, 142–150.

    Article  PubMed  CAS  Google Scholar 

  55. Mies, G., Kohno, K. and Hossmann, K.-A. (1994) Prevention of periinfarct direct current shifts with glutamate antagonist NBQX following occlusion of the middle cerebral artery in the rat. J. Cerebr. Blood Flow Metabol. 14, 802–807.

    Article  CAS  Google Scholar 

  56. Olah, L., Wecker, S. and Hoehn, M. (2000) Secondary deterioration of apparent diffusion coefficient after 1-hour transient focal cerebral ischemia in rats. J. Cerebr. Blood Flow Metabol. 20, 1474–1482.

    Article  CAS  Google Scholar 

  57. Olah, L., Wecker, S. and Hoehn, M. (2001) Relation of apparent diffusion coefficient changes and metabolic disturbances after 1 hour of focal cerebral ischemia and at different reperfusion phases in rats. J. Cerebr. Blood Flow Metabol. 21, 430–439.

    Article  CAS  Google Scholar 

  58. Pillekamp, F., Grüne, M., Brinker, G., Franke, C., Uhlenküken, U., Hoehn, M. and Hossmann, K.-A. (2001) Magnetic resonance prediction of outcome after thrombolytic treatment. Magn. Reson. Imaging 19, 143–152.

    Article  PubMed  CAS  Google Scholar 

  59. Fiehler, J., Fiebach, J. B., Gass, A., Hoehn, M., Kucinski, T., Neumann-Haefelin, T., Schellinger, P. D., Siebler, M., Villringer, A. and Rother, J. (2002) Diffusion-weighted imaging in acute stroke – a tool of uncertain value? Cerebrovasc. Dis. 14, 187–196.

    Article  PubMed  Google Scholar 

  60. Silva, A. C. and Bock, N. A. (2008) Manganese-enhanced MRI: An exceptional tool in translational neuroimaging. Schizophr. Bull. 34, 595–604.

    Article  PubMed  Google Scholar 

  61. Aoki, I., Naruse, S. and Tanaka, C. (2004) Manganese-enhanced magnetic resonance imaging (MEMRI) of brain activity and applications to early detection of brain ischemia. NMR Biomed. 17, 569–580.

    Article  PubMed  CAS  Google Scholar 

  62. Aoki, I., Ebisu, T., Tanaka, C., Katsuta, K., Fujikawa, A., Umeda, M., Fukunaga, M., Takegami, T., Shapiro, E. M. and Naruse, S. (2003) Detection of the anoxic depolarization of focal ischemia using manganese-enhanced MRI. Magn. Reson. Med. 50, 7–12.

    Article  PubMed  Google Scholar 

  63. Henning, E. C., Meng, X., Fisher, M. and Sotak, C. H. (2005) Visualization of cortical spreading depression using manganese-enhanced magnetic resonance imaging. Magn. Reson. Med. 53, 851–857.

    Article  PubMed  Google Scholar 

  64. Silva, A. C., Lee, J. H., Aoki, I. and Koretsky, A. P. (2004) Manganese-enhanced magnetic resonance imaging (MEMRI): Methodological and practical considerations. NMR Biomed. 17, 532–543.

    Article  PubMed  CAS  Google Scholar 

  65. Soria, G., Wiedermann, D., Justicia, C., Ramos-Cabrer, P. and Hoehn, M. (2008) Reproducible imaging of rat corticothalamic pathway by longitudinal manganese-enhanced MRI (L-MEMRI). Neuroimage 41, 668–674.

    Article  PubMed  Google Scholar 

  66. Walz, B., Zimmermann, C., Bottger, S. and Haberl, R. L. (2002) Prognosis of patients after hemicraniectomy in malignant middle cerebral artery infarction. J. Neurol. 249, 1183–1190.

    Article  PubMed  Google Scholar 

  67. Yuan, J., Lipinski, M. and Degterev, A. (2003) Diversity in the mechanisms of neuronal cell death. Neuron 40, 401–413.

    Article  PubMed  CAS  Google Scholar 

  68. Honig, L. S. and Rosenberg, R. N. (2000) Apoptosis and neurologic disease. Am. J. Med. 108, 317–330.

    Article  PubMed  CAS  Google Scholar 

  69. Stoll, G., Jander, S. and Schroeter, M. (1998) Inflammation and glial responses in ischemic brain lesions. Prog. Neurobiol. 56, 149–171.

    Article  PubMed  CAS  Google Scholar 

  70. Hanisch, U. K. and Kettenmann, H. (2007) Microglia: Active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387–1394.

    Article  PubMed  CAS  Google Scholar 

  71. Stoll, G., Jander, S. and Schroeter, M. (2002) Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. Adv. Exp. Med. Biol. 513, 87–113.

    PubMed  CAS  Google Scholar 

  72. Huang, J., Upadhyay, U. M. and Tamargo, R. J. (2006) Inflammation in stroke and focal cerebral ischemia. Surg. Neurol. 66, 232–245.

    Article  PubMed  Google Scholar 

  73. Barak, S. and Duncan, P. W. (2006) Issues in selecting outcome measures to assess functional recovery after stroke. NeuroRx 3, 505–524.

    Article  PubMed  Google Scholar 

  74. van Bruggen, N., Roberts, T. P. and Cremer, J. E. (1994) The application of magnetic resonance imaging to the study of experimental cerebral ischaemia. Cereb. Brain Metab. Rev. 6, 180–210.

    Google Scholar 

  75. Hoehn-Berlage, M., Eis, M., Back, T., Kohno, K. and Yamashita, K. (1995) Changes of relaxation times (T 1, T 2) and apparent diffusion coefficient after permanent middle cerebral artery occlusion in the rat: Temporal evolution, regional extent, and comparison with histology. Magn. Reson. Med. 34, 824–834.

    Article  PubMed  CAS  Google Scholar 

  76. Neumann-Haefelin, T., Kastrup, A., de Crespigny, A., Yenari, M. A., Ringer, T., Sun, G. H. and Moseley, M. E. (2000) Serial MRI after transient focal cerebral ischemia in rats: Dynamics of tissue injury, blood-brain barrier damage, and edema formation. Stroke 31, 1965–1972; discussion 1972–1973.

    Article  PubMed  CAS  Google Scholar 

  77. Calamante, F., Lythgoe, M. F., Pell, G. S., Thomas, D. L., King, M. D., Busza, A. L., Sotak, C. H., Williams, S. R., Ordidge, R. J. and Gadian, D. G. (1999) Early changes in water diffusion, perfusion, T 1, and T 2 during focal cerebral ischemia in the rat studied at 8.5 T. Magn. Reson. Med. 41, 479–485.

    Article  PubMed  CAS  Google Scholar 

  78. Runge, V. M., Price, A. C., Wehr, C. J., Atkinson, J. B. and Tweedle, M. F. (1985) Contrast enhanced MRI. Evaluation of a canine model of osmotic blood–brain barrier disruption. Invest. Radiol. 20, 830–844.

    Article  PubMed  CAS  Google Scholar 

  79. Bonnemain, B. (1998) Superparamagnetic agents in magnetic resonance imaging: Physicochemical characteristics and clinical applications. A review. J. Drug Target. 6, 167–174.

    Article  PubMed  CAS  Google Scholar 

  80. Chambon, C., Clement, O., Le Blanche, A., Schouman-Claeys, E. and Frija, G. (1993) Superparamagnetic iron oxides as positive MR contrast agents: In vitro and in vivo evidence. Magn. Reson. Med. 11, 509–519.

    CAS  Google Scholar 

  81. Stoll, G. and Bendszus, M. (2009) Imaging of inflammation in the peripheral and central nervous system by magnetic resonance imaging. Neurosci. 158, 1151–1160.

    Article  CAS  Google Scholar 

  82. Stuber, M., Gilson, W. D., Schar, M., Kedziorek, D. A., Hofmann, L. V., Shah, S., Vonken, E. J., Bulte, J. W. and Kraitchman, D. L. (2007) Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn. Reson. Med. 58, 1072–1077.

    Article  PubMed  Google Scholar 

  83. Weber, R., Wegener, S., Ramos-Cabrer, P., Wiedermann, D. and Hoehn, M. (2005) MRI detection of macrophage activity after new experimental stroke in rats: New indicators for late appearance of vascular degradation? Magn. Reson. Med. 54, 59–66.

    Article  PubMed  Google Scholar 

  84. Ogawa, S., Lee, T. M., Kay, A. R. and Tank, D. W. (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 87, 9868–9872.

    Article  PubMed  CAS  Google Scholar 

  85. Ueki, M., Mies, G. and Hossmann, K.-A. (1992) Effect of alpha-chloralose, halothane, pentobarbital and nitrous oxide anesthesia on metabolic coupling in somatosensory cortex of rat. Acta Anaesthesiol. Scand. 36, 318–322.

    Article  PubMed  CAS  Google Scholar 

  86. Ramos-Cabrer, P., Weber, R., Wiedermann, D. and Hoehn, M. (2005) Continuous noninvasive monitoring of transcutaneous blood gases for a stable and persistent BOLD contrast in fMRI studies in the rat. NMRBiomed. 18, 440–446.

    CAS  Google Scholar 

  87. Weber, R., Ramos-Cabrer, P., Wiedermann, D., van Camp, N. and Hoehn, M. (2006) A fully noninvasive and robust experimental protocol for longitudinal fMRI studies in the rat. Neuroimage 29, 1303–1310.

    Article  PubMed  Google Scholar 

  88. Weber, R., Ramos-Cabrer, P., Justicia, C., Wiedermann, D., Strecker, C., Sprenger, C. and Hoehn, M. (2008) Early prediction of functional recovery after experimental stroke: Functional magnetic resonance imaging, electrophysiology, and behavioral testing in rats. J. Neurosci. 28, 1022–1029.

    Article  PubMed  CAS  Google Scholar 

  89. Olah, L., Franke, C., Schwindt, W. and Hoehn, M. (2000) CO(2) reactivity measured by perfusion MRI during transient focal cerebral ischemia in rats. Stroke 31, 2236–2244.

    Article  PubMed  CAS  Google Scholar 

  90. Bock, C., Schmitz, B., Kerskens, C. M., Gyngell, M. L., Hossmann, K.-A. and Hoehn-Berlage, M. (1998) Functional MRI of somatosensory activation in rat: Effect of hypercapnic up-regulation on perfusion- and BOLD-imaging. Magn. Reson. Med. 39, 457–461.

    Article  PubMed  CAS  Google Scholar 

  91. Pillekamp, F., Grüne, M., Brinker, G., Franke, C., Uhlenküken, U., Hoehn, M. and Hossmann, K. (2001) Magnetic resonance prediction of outcome after thrombolytic treatment. Magn. Reson. Imaging 19, 143–152.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support from the European Union FP6 and FP7 programs (LSHB-CT-2006-037526, StemStroke) and (HEALTH-F5-2008-201842, ENCITE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Hoehn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kallur, T., Hoehn, M. (2011). Experimental Stroke Research: The Contributions of In Vivo MRI. In: Schröder, L., Faber, C. (eds) In vivo NMR Imaging. Methods in Molecular Biology, vol 771. Humana Press. https://doi.org/10.1007/978-1-61779-219-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-219-9_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-218-2

  • Online ISBN: 978-1-61779-219-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics