Skip to main content

Flow Cytometric Analysis of Human Pluripotent Stem Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 767))

Abstract

Human pluripotent stem cells, human embryonic stem cells and induced pluripotent stem cells, represent an exciting new era in regenerative medicine and drug discovery. However, prior to their clinical translation, there is a need to gain an in-depth understanding of human pluripotent stem cell biology by characterizing these potentially heterogeneous populations of cells. Flow cytometry provides a rapid and efficient approach with which to isolate, purify, and study the functional properties of defined pluripotent stem cell types.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Maherali, N., and Hochedlinger, K. (2008) Induced pluripotency of mouse and human somatic cells, Cold Spring Harb Symp Quant Biol 73: 157–162.

    Article  PubMed  CAS  Google Scholar 

  2. Menendez, P., Wang, L., and Bhatia, M. (2005) Genetic manipulation of human embryonic stem cells: a system to study early human development and potential therapeutic applications, Curr Gene Ther 5 : 375–385.

    Google Scholar 

  3. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell 131: 861–872.

    Article  PubMed  CAS  Google Scholar 

  4. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, II, and Thomson, J. A. (2007) Induced pluripotent stem cell lines derived from human somatic cells, Science 318: 19171920.

    Google Scholar 

  5. Laslett, A. L., Filipczyk, A. A., and Pera, M. F. (2003) Characterization and culture of human embryonic stem cells, Trends Cardiovasc Med 13: 295–301.

    Article  PubMed  CAS  Google Scholar 

  6. Andrews, P. W., Goodfellow, P. N., Shevinsky, L. H., Bronson, D. L., and Knowles, B. B. (1982) Cell-surface antigens of a clonal human embryonal carcinoma cell line: morphological and antigenic differentiation in culture, Int J Cancer 29: 523531.

    Google Scholar 

  7. Pera, M. F., Filipczyk, A. A., Hawes, S. M., and Laslett, A. L. (2003) Isolation, characterization, and differentiation of human embryonic stem cells, Methods Enzymol 365: 429–446.

    Article  PubMed  CAS  Google Scholar 

  8. Laslett, A. L., Grimmond, S., Gardiner, B., Stamp, L., Lin, A., Hawes, S. M., Wormald, S., Nikolic-Paterson, D., Haylock, D., and Pera, M. F. (2007) Transcriptional analysis of early lineage commitment in human ­embryonic stem cells, BMC developmental biology 7: 12.

    Article  PubMed  Google Scholar 

  9. Kolle, G., Ho, M., Zhou, Q., Chy, H. S., Krishnan, K., Cloonan, N., Bertoncello, I., Laslett, A. L., and Grimmond, S. M. (2009) Identification of Human Embryonic Stem Cell Surface Markers by Combined Membrane-Polysome Translation State Array Analysis and Immunotranscriptional Profiling, Stem Cells 27: 24462456.

    Google Scholar 

  10. Thomson, J. A., Kalishman, J., Golos, T. G., Durning, M., Harris, C. P., Becker, R. A., and Hearn, J. P. (1995) Isolation of a primate embryonic stem cell line, Proc Natl Acad Sci USA 92: 78447848.

    Google Scholar 

  11. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts, Science 282: 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  12. Yamanaka, S. (2009) A fresh look at iPS cells, Cell 137: 13–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Methods described in this chapter were developed using funding from the Australian Stem Cell Centre (ASCC) and the NSW/VIC Government Stem Cell Research Grant Program 2008 to ALL. The authors would like to thank James Thomson, University of Wisconsin for the provision of the human iPSC lines, the Australian Stem Cell Centre’s Core hESC Laboratories (Stem Core) for providing cell culture and support services as well as the Flow Core (a collaborative initiative between Monash University, the ASCC, and the Australian Regenerative Medicine Institute (ARMI)) for technical assistance and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew L. Laslett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ho, M.S.H., Fryga, A., Laslett, A.L. (2011). Flow Cytometric Analysis of Human Pluripotent Stem Cells. In: Schwartz, P., Wesselschmidt, R. (eds) Human Pluripotent Stem Cells. Methods in Molecular Biology, vol 767. Humana Press. https://doi.org/10.1007/978-1-61779-201-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-201-4_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-200-7

  • Online ISBN: 978-1-61779-201-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics