Skip to main content

Genome Engineering Using Targeted Oligonucleotide Libraries and Functional Selection

  • Protocol
  • First Online:
Strain Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 765))

Abstract

The λ phage Red proteins greatly enhance homologous recombination in Escherichia coli. Red-mediated recombination or “recombineering” can be used to construct targeted gene deletions as well as to introduce point mutations into the genome. Here, we describe our method for scanning mutagenesis using recombineered oligonucleotide libraries. This approach entails randomization of specific codons within a target gene, followed by functional selection to isolate mutants. Oligonucleotide library mutagenesis has generated hundreds of novel antibiotic resistance mutations in genes encoding ribosomal proteins, and should be applicable to other systems for which functional selections exist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Court D. L., Sawitzke J. A., and Thomason L. C. (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36, 361–388.

    Article  PubMed  CAS  Google Scholar 

  2. Thomason L., Court D. L., Bubunenko M., Costantino N., Wilson H., Datta S., et al. (2007) Recombineering: genetic engineering in bacteria using homologous recombination. Curr Protoc Mol Biol Chapter 1, Unit 1 16.

    Google Scholar 

  3. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2, 2006 0008.

    PubMed  Google Scholar 

  4. Swingle B., Markel E., Costantino N., Bubunenko M. G., Cartinhour S., and Court D. L. (2010) Oligonucleotide recombination in Gram-negative bacteria. Mol Microbiol 75, 138–148.

    Article  PubMed  CAS  Google Scholar 

  5. van Kessel J. C., Marinelli L. J., and Hatfull G. F. (2008) Recombineering mycobacteria and their phages. Nat Rev Microbiol 6, 851–857.

    Article  PubMed  Google Scholar 

  6. Ellis H. M., Yu D., DiTizio T., and Court D. L. (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A 98, 6742–6746.

    Article  PubMed  CAS  Google Scholar 

  7. Costantino N., and Court D. L. (2003) Enhanced levels of lambda Red-mediated recombinants in mismatch repair mutants. Proc Natl Acad Sci U S A 100, 15748–15753.

    Article  PubMed  CAS  Google Scholar 

  8. Diner E. J., and Hayes C. S. (2009) Recombineering reveals a diverse collection of ribosomal proteins L4 and L22 that confer resistance to macrolide antibiotics. J Mol Biol 386, 300–315.

    Article  PubMed  CAS  Google Scholar 

  9. Holberger L. E., and Hayes C. S. (2009) Ribosomal protein S12 and aminoglycoside antibiotics modulate A-site mRNA cleavage and transfer-messenger RNA activity in Escherichia coli. J Biol Chem 284, 32188–32200.

    Article  PubMed  CAS  Google Scholar 

  10. DeWilde M., and Wittmann-Liebold B. (1973) Localization of the amino-acid exchange in protein S5 from an Escherichia coli mutant resistant to spectinomycin. Mol Gen Genet 127, 273–276.

    Article  PubMed  CAS  Google Scholar 

  11. Funatsu G., Nierhaus K., and Wittmann-Liebold B. (1972) Ribosomal proteins. XXII. Studies on the altered protein S5 from a spectinomycin-resistant mutant of Escherichia coli. J Mol Biol 64, 201–209.

    Google Scholar 

  12. Funatsu G., Schiltz E., and Wittmann H. G. (1972) Ribosomal proteins. XXVII. Locali­za­tion of the amino acid exchanges in protein S5 from two Escherichia coli mutants resistant to spectinomycin. Mol Gen Genet 114, 106–111.

    Google Scholar 

  13. Itoh T. (1976) Amino acid replacement in the protein S5 from a spectinomycin resistant mutant of Bacillus subtilis. Mol Gen Genet 144, 39–42.

    Article  PubMed  CAS  Google Scholar 

  14. Kehrenberg C., and Schwarz S. (2007) Mutations in 16S rRNA and ribosomal protein S5 associated with high-level spectinomycin resistance in Pasteurella multocida. Antimicrob Agents Chemother 51, 2244–2246.

    Article  PubMed  CAS  Google Scholar 

  15. He X., Miao V., and Baltz R. H. (2005) Spectinomycin resistance in rpsE mutants is recessive in Streptomyces roseosporus. J Antibiot (Tokyo) 58, 284–288.

    Article  CAS  Google Scholar 

  16. Kirthi N., Roy-Chaudhuri B., Kelley T., and Culver G. M. (2006) A novel single amino acid change in small subunit ribosomal protein S5 has profound effects on translational fidelity. RNA 12, 2080–2091.

    Article  PubMed  CAS  Google Scholar 

  17. Datsenko K. A., and Wanner B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97, 6640–6645.

    Article  PubMed  CAS  Google Scholar 

  18. Datta S., Costantino N., and Court D. L. (2006) A set of recombineering plasmids for gram-negative bacteria. Gene 379, 109–115.

    Article  PubMed  CAS  Google Scholar 

  19. Cha R. S., Zarbl H., Keohavong P., and Thilly W. G. (1992) Mismatch amplification mutation assay (MAMA): application to the c-H-ras gene. PCR Methods Appl 2, 14–20.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grant R01 GM078634 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Hayes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Diner, E.J., Garza-Sánchez, F., Hayes, C.S. (2011). Genome Engineering Using Targeted Oligonucleotide Libraries and Functional Selection. In: Williams, J. (eds) Strain Engineering. Methods in Molecular Biology, vol 765. Humana Press. https://doi.org/10.1007/978-1-61779-197-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-197-0_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-196-3

  • Online ISBN: 978-1-61779-197-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics