Skip to main content

High-Throughput Transposon Mutagenesis of Corynebacterium glutamicum

  • Protocol
  • First Online:
Strain Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 765))

Abstract

Construction of gene disruption mutants and analysis of the resultant phenotypes are an important strategy to study gene function. A simple and high-throughput method developed for microorganisms combines two different types of transposons, direct genomic DNA amplification and thermal asymmetric interlaced-PCR. The considerable utility of this approach is demonstrable in Corynebacterium glutamicum, where 18,000 transposon disruptants enabled the generation of an insertion library covering nearly 80% of the organism’s 2,990 ORFs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dean F. B., Nelson J. R., Giesler T. L., and Lasken R. S. (2001) Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and 5 multiply-primed rolling circle amplification. Genome Res. 11, 1095–1099.

    Article  PubMed  CAS  Google Scholar 

  2. Knobloch J. K., Nedelmann M., Kiel K., Bartscht K., Horstkotte M. A., Dobinsky S., Rohde H., and Mack D. (2003) Establishment of an arbitrary PCR for rapid identification of Tn917 insertion sites in Staphylococcus epidermidis: characterization of biofilm-negative and nonmucoid mutants. Appl. Environ. Microbiol. 69, 5812–5818.

    Article  PubMed  CAS  Google Scholar 

  3. Liu Y. G., Mitsukawa N., Oosumi T., and Whittier R. F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457–463.

    Article  PubMed  CAS  Google Scholar 

  4. Vertès A. A., Asai Y., Inui M., Kobayashi M., Kurusu Y., and Yukawa H. (1994) Transposon mutagenesis of coryneform bacteria. Mol. Gen. Genet. 245, 397–405.

    Article  PubMed  Google Scholar 

  5. Vertès A. A., Inui M., Kobayashi M., Kurusu Y., and Yukawa H. (1994) Isolation and characterization of IS31831, a transposable element from Corynebacterium glutamicum. Mol. Microbiol. 11, 739–746.

    Article  PubMed  Google Scholar 

  6. Goryshin I. Y. and Reznikoff W. S. (1998) Tn5 in vitro transposition. J. Biol. Chem. 273, 7367–7374.

    Article  PubMed  CAS  Google Scholar 

  7. Goryshin I. Y., Miller J. A., Kil Y. V., Lanzov V. A., and Reznikoff W. S. (1998) Tn5/IS50 target recognition. Proc. Natl. Acad. Sci. U. S. A. 95, 10716–10721.

    Article  PubMed  CAS  Google Scholar 

  8. Oram D. M., Avdalovic A., and Holmes R. K. (2002) Construction and characterization of transposon insertion mutations in Corynebacterium diphtheriae that affect expression of the diphtheria toxin repressor (DtxR). J. Bacteriol. 184, 5723–5732.

    Article  PubMed  CAS  Google Scholar 

  9. Goryshin I. Y., Jendrisak J. L., Hoffman M., Meis R., and Reznikoff W. S. (2000) Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat. Biotechnol. 18, 97–100.

    Article  PubMed  CAS  Google Scholar 

  10. Herron P. R., Hughes G., Chandra G., Fielding S., and Dyson P. J. (2004) Transposon Express, a software application to report the identity of insertions obtained by comprehensive transposon mutagenesis of sequenced genomes: analysis of the preference for in vitro Tn5 transposition into GC-rich DNA. Nucleic. Acids. Res. 32, e113.

    Article  PubMed  Google Scholar 

  11. Suzuki N., Okai N., Nonaka H., Tsuge Y., Inui M., and Yukawa H. (2006) High throughput transposon mutagenesis of Corynebacterium glutamicum and construction of a single-gene disruptant mutant library. Appl. Environ. Microbiol. 72, 3750–3755.

    Article  PubMed  CAS  Google Scholar 

  12. Vertès A. A., Inui M., Kobayashi M., Kurusu Y., Yukawa H. (1993) Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res. Microbiol. 144, 181–185.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. C. Omumasaba for critical reading of the manuscript. This research was partly supported by New Energy and Industrial Technology Development Organization (NEDO), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Yukawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Suzuki, N., Inui, M., Yukawa, H. (2011). High-Throughput Transposon Mutagenesis of Corynebacterium glutamicum . In: Williams, J. (eds) Strain Engineering. Methods in Molecular Biology, vol 765. Humana Press. https://doi.org/10.1007/978-1-61779-197-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-197-0_24

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-196-3

  • Online ISBN: 978-1-61779-197-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics