Skip to main content

Targeted Chromosomal Gene Knockout Using PCR Fragments

  • Protocol
  • First Online:
Strain Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 765))

Abstract

The development of recombineering technology has converged to a point that virtually any type of genetic modification can be made in the Escherichia coli chromosome. The most straightforward ­modification is a chromosomal gene knockout, which is done by electroporation of a PCR fragment that contains a selectable drug marker flanked by 50 bp of target DNA. The phage λ Red recombination system expressed in vivo from a plasmid promotes deletion of the gene of interest at high efficiency. The combination of this technology with site-specific recombination systems of Cre and Flp has enabled genetic engineers to construct a variety of marked and precise gene knockouts in a variety of microbial chromosomes. The basic protocols for designing PCR substrates for recombineering, generating ­recombineering-proficient electrocompetent strains of E. coli, and for selection and verification of recombinant clones are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murphy K. C. (1998) Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180, 2063–2071.

    PubMed  CAS  Google Scholar 

  2. Zhang Y., Buchholz F., Muyrers J. P., and Stewart, A. F. (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20, 123–128.

    Article  PubMed  CAS  Google Scholar 

  3. Datsenko K. A., and Wanner B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.

    Article  PubMed  CAS  Google Scholar 

  4. Yu D., Ellis H. M., Lee E. C., Jenkins N. A., Copeland N. G., and Court, D. L. (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97, 5978–5983.

    Article  PubMed  CAS  Google Scholar 

  5. Court D. L., Sawitzke J. A., and Thomason L. C. (2002) Genetic engineering using homologous recombination. Annu. Rev. Genet. 36, 361–388.

    Article  PubMed  CAS  Google Scholar 

  6. Murphy K. C., and Campellone K. G. (2003) Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic E. coli. BMC Mol Biol 4, 11.

    Google Scholar 

  7. Sawitzke J. A., Thomason L. C., Costantino N., Bubunenko M., Datta S., and Court D. L. (2007) Recombineering: in vivo genetic engineering in E. coli, S. enterica, and beyond. Methods Enzymol 421, 171–199.

    Google Scholar 

  8. Little J. W. (1967) An exonuclease induced by bacteriophage lambda. II. Nature of the enzymatic reaction. J Biol Chem 242, 679–686.

    Google Scholar 

  9. Sriprakash K. S., Lundh N., Huh M.-O., and Radding C. M. (1975) The specificity of lambda exonuclease. Interactions with single-stranded DNA. J Biol Chem 250, 5438–5445.

    Google Scholar 

  10. Echols H., and Gingery R. (1968) Mutants of bacteriophage (lambda) defective in vegetative genetic recombination. J Mol Biol 34, 239–249.

    Article  Google Scholar 

  11. Signer E. R., and Weil J. (1968) Recombination in bacteriophage lambda. I. Mutants deficient in general recombination. J Mol Biol 34, 261–271.

    Google Scholar 

  12. Kmiec E., and Holloman W. K. (1981) Beta protein of bacteriophage` lambda promotes renaturation of DNA. J Biol Chem 256, 12636–12639.

    PubMed  CAS  Google Scholar 

  13. Muniyappa K., and Radding C. M. (1986) The homologous recombination system of phage lambda. Pairing activities of beta protein. J Biol Chem 261, 7472–7478.

    Google Scholar 

  14. Passy S. I., Yu X., Li Z., Radding C. M., and Egelman E. H. (1999) Rings and filaments of beta protein from bacteriophage lambda suggest a superfamily of recombination proteins. Proc Natl Acad Sci U S A 96, 4279–4284.

    Article  PubMed  CAS  Google Scholar 

  15. Iyer L. M., Koonin E. V., and Aravind L. (2002) Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52. BMC Genomics. 3, 8.

    Article  PubMed  Google Scholar 

  16. Karu A. E., Sakaki Y., Echols H., and Linn S. (1975) The gamma protein specified by bacteriophage gamma. Structure and inhibitory activity for the recBC enzyme of Escherichia coli. J Biol Chem 250, 7377–7387.

    Google Scholar 

  17. Murphy K. C. (1991) Lambda Gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme. J Bacteriol 173, 5808–5821.

    PubMed  CAS  Google Scholar 

  18. Murphy K. C. (2007) The lambda Gam protein inhibits RecBCD binding to dsDNA ends. J Mol Biol 371, 19–24.

    Article  PubMed  CAS  Google Scholar 

  19. Ellis H. M., Yu D., DiTizio T., and Court D. L. (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A 98, 6742–6746.

    Article  PubMed  CAS  Google Scholar 

  20. Poteete A. R. (2008) Involvement of DNA replication in phage lambda Red-mediated homologous recombination. Mol Microbiol 68, 66–74.

    Article  PubMed  CAS  Google Scholar 

  21. Palmeros B., Wild J., Szybalski W., Le Borgne S., Hernandez-Chavez G., Gosset G., Valle F., and Bolivar F. (2000) A family of removable cassettes designed to obtain antibiotic-­resistance-free genomic modifications of Escherichia coli and other bacteria. Gene 247, 255–264.

    Article  PubMed  CAS  Google Scholar 

  22. Grindley N. D., Whiteson K. L., and Rice P. A. (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75, 567–605.

    Article  PubMed  CAS  Google Scholar 

  23. Hoess R. H., and Abremski K. (1984) Interaction of the bacteriophage P1 recombinase Cre with the recombining site loxP. Proc Natl Acad Sci U S A 81, 1026–1029.

    Article  PubMed  CAS  Google Scholar 

  24. Hamilton D. L., and Abremski K. (1984) Site-specific recombination by the bacteriophage P1 lox-Cre system. Cre-mediated synapsis of two lox sites. J Mol Biol 178, 481–486.

    Google Scholar 

  25. Sauer B., and Henderson N. (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85, 5166–5170.

    Article  PubMed  CAS  Google Scholar 

  26. Datta S., Costantino N., and Court D. L. (2006) A set of recombineering plasmids for gram-negative bacteria. Gene 379, 109–115.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenan C. Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Murphy, K.C. (2011). Targeted Chromosomal Gene Knockout Using PCR Fragments. In: Williams, J. (eds) Strain Engineering. Methods in Molecular Biology, vol 765. Humana Press. https://doi.org/10.1007/978-1-61779-197-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-197-0_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-196-3

  • Online ISBN: 978-1-61779-197-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics