Skip to main content

Plasmid Artificial Modification: A Novel Method for Efficient DNA Transfer into Bacteria

  • Protocol
  • First Online:
Strain Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 765))

Abstract

Bacterial transformation is an essential component of many molecular biological techniques, but bacterial restriction-modification (R-M) systems can preclude the efficient introduction of shuttle vector plasmids into target bacterial cells. Whole-genome DNA sequences have recently been published for a variety of bacteria. Using homology and motif analyses, putative R-M genes can be identified from genome sequences. Introducing DNA methyltransferase genes into Escherichia coli cells causes subsequently transformed plasmids to be modified by these enzymes. We propose a new method, designated Plasmid Artificial Modification (PAM). A PAM plasmid encoding the modification enzymes expressed by the target bacterial host is transformed into E. coli (PAM host). Propagation of a shuttle vector from the PAM host to the target bacterium ensures that the plasmid will be modified such that it is protected from restriction endonuclease digestion in the target bacterium. The result will be a higher transformation efficiency. Here, we describe the use of PAM and electroporation to transform Bifidobacterium adolescentis ATCC15703. By introducing two genes encoding modification enzymes, we improved transformation efficiency 105-fold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberts R.J., Vincze T., Posfai J., Macelis D. (2010) REBASE – a database for DNA restriction and modification: enzymes, genes and genomes. Nucl. Acids Res, 38, D234–D236.

    Article  PubMed  CAS  Google Scholar 

  2. Schweizer H.P. (2008) Bacterial genetics: past achievements, present state of the field, and future challenges. BioTechniques, 44, 633–641.

    Article  PubMed  CAS  Google Scholar 

  3. William J., Dower W.J., Miller J.F., Ragsdale C.W. (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucl. Acids Res, 16, 6127–6145.

    Google Scholar 

  4. Calvin N.M., Hanawalt P.C. (1988) High-efficiency transformation of bacterial cells by electroporation. J. Bacteriol, 170, 2796–280.

    PubMed  CAS  Google Scholar 

  5. Miller J.F. (1994) Bacterial transformation by electroporation In Bacterial pathogenesis. Part A. Identification and regulation of virulence factors. Methods in Enzymology, 235, 375–385.

    Google Scholar 

  6. Arber W., Linn S. (1969) DNA modification and restriction. Annu. Rev. Biochem, 38, 467–500.

    Article  PubMed  CAS  Google Scholar 

  7. Tock M.R., Dryden D.T. (2005) The biology of restriction and anti-restriction. Curr. Opin. Microbiol, 8, 466–472.

    Article  PubMed  CAS  Google Scholar 

  8. Roberts R.J. et al. (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucl. Acids Res. 31, 1805–1812.

    Article  PubMed  CAS  Google Scholar 

  9. Yasui K., Kano Y., Tanaka K., Watanabe K., Shimizu-Kadota M., Yoshikawa H., Suzuki T. (2009) Improvement of bacterial transformation efficiency using plasmid artificial modification. Nucl. Acids Res. 37, e3. doi: 10.1093/nar/gkn884

    Article  PubMed  Google Scholar 

  10. Elhai J., Vepritskiy A., Muro-Pastor A.M., Flores E., Wolk C.P. (1997) Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. J. Bacteriol, 179, 1998–2005.

    PubMed  CAS  Google Scholar 

  11. Biswas I., Gruss A., Ehrlich S.D., Maguin E. (1993) High-efficiency gene inactivation and replacement system for gram-positive bacteria. J. Bacteriol, 175, 3628–3635.

    PubMed  CAS  Google Scholar 

  12. Hashimoto-Gotoh T., Sekiquchi M. (1977). Mutations of temperature sensitivity in R plasmid pSC101. J. Bacteriol, 131, 405–412.

    PubMed  CAS  Google Scholar 

  13. Sugawara H., Ohyama A., Mori H., Kurokawa K. (2009) Microbial Genome Annotation Pipeline (MiGAP) for diverse users. The 20th International Conference on Genome Informatics (GIW2009) Poster and Software Demonstrations (Yokohama), S001-1–2.

    Google Scholar 

  14. Matsumura H., Takeuchi A., Kano Y. (1997) Construction of Escherichia coli-Bifidobacterium longum shuttle vector transforming B. longum 105-A and 108-A. Biosci. Biotechnol. Biochem, 61, 1211–1212.

    Article  PubMed  CAS  Google Scholar 

  15. Tanaka K., Samura K., Kano Y. (2005) Structural and functional analysis of pTB6 from Bifidobacterium longum. Biosci. Biote­chnol. Biochem, 69, 422–425.

    Article  PubMed  CAS  Google Scholar 

  16. Guzman L.M., Belin D., Carson M.J., Beckwith J. (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol, 177, 4121–4130.

    PubMed  CAS  Google Scholar 

  17. Mizuguchi H., Nakatsuji M., Fujiwara S., Takagi M., Imanaka T. (1999) Characterization and application to hot start PCR of neutralizing monoclonal antibodies against KOD DNA polymerase. J. Biochem, 126, 762–768.

    PubMed  CAS  Google Scholar 

  18. Novick R.P. (1987) Plasmid incompatibility. Microbiol. Rev, 51, 381–395.

    PubMed  CAS  Google Scholar 

  19. Zhu B., Cai G., Hall E.O., Freeman G.J. (2007) In-fusion assembly: seamless engineering of multidomain fusion proteins, modular vectors, and mutations. Biotechniques, 43, 354–359.

    Article  PubMed  CAS  Google Scholar 

  20. Rozen S., Skaletsky H.J. (2000) Primer3 on the WWW for general users and for biologist programmers. Humana Press, Totowa, NJ.

    Google Scholar 

  21. Inoue H., Nojima H., Okayama H. (1990) High efficiency transformation of Escherichia coli with plasmids. Gene, 96, 23–28.

    Article  PubMed  CAS  Google Scholar 

  22. Richter H.E., Loewen P.C. (1981) Induction of catalase in Escherichia coli by ascorbic acid involves hydrogen peroxide. Biochem. Biophys. Res. Commun, 100, 1039–1046.

    Article  PubMed  CAS  Google Scholar 

  23. Mercenier A., Chassy B.M. (1988) Strategies for the development of bacterial transformation systems. Biochimie, 70, 503–517.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Professor M. Shimizu-Kadota for useful discussion. This work was partly supported by the Grant-in-Aid for Scientific Research on Priority Areas in Applied Genomics from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Suzuki, T., Yasui, K. (2011). Plasmid Artificial Modification: A Novel Method for Efficient DNA Transfer into Bacteria. In: Williams, J. (eds) Strain Engineering. Methods in Molecular Biology, vol 765. Humana Press. https://doi.org/10.1007/978-1-61779-197-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-197-0_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-196-3

  • Online ISBN: 978-1-61779-197-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics