Purification of Nitrogenase Proteins

  • Jared A. Wiig
  • Chi-Chung Lee
  • Aaron W. Fay
  • Yilin Hu
  • Markus W. RibbeEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 766)


Nitrogenase is one of the most complex enzymes known to date. The extensively studied molybdenum nitrogenase consists of two protein components and three metal centers that are critical for nitrogenase activity. The inherent complexity of this enzyme system, which is further compounded by the sensitivity of the metal clusters toward oxygen, makes the large-scale purification of fully active nitrogenase proteins a formidable task. This chapter highlights several methods that have been developed for the purification of nitrogenase proteins over the past few decades. Techniques used include weak anion exchange chromatography, size exclusion chromatography, and immobilized metal affinity chromatography. These methods can be selectively applied to nitrogenase variants and other related proteins.

Key words

Anaerobic protein purification nitrogenase MoFe protein Fe protein VFe protein weak anion exchange chromatography (WAEC) gel filtration immobilized metal affinity chromatography (IMAC) 



The authors are supported by National Institutes of Health grant GM 67626 (M.W.R.) and Herman Frasch Foundation grant 617-HF07 (M.W.R.).


  1. 1.
    Burgess BK, Wherland S, Stiefel EI et al (1980) HD formation by nitrogenase: a probe for N2 reduction intermediates. In: Newton WE, Otsuka S (eds) Molybdenum Chemistry of Biological Significance, pp. 73–84. Plenum Press, New York, NYGoogle Scholar
  2. 2.
    Stiefel EI, Burgess BK, Wherland S et al (1980) Azotobacter vinelandii Biochemistry: H2(D2) relationships and some aspects of iron metabolism. In: Newton WE, Orme-Johnson WH (eds) Nitrogen Fixation, pp. 211–222. University Park Press, Baltimore, MDGoogle Scholar
  3. 3.
    Peters JW, Stowell MH, Soltis SM et al (1997) Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry 36:1181–1187PubMedCrossRefGoogle Scholar
  4. 4.
    Georgiadis MM, Komiya H, Chakrabarti P et al (1992) Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science 257:1653–1659PubMedCrossRefGoogle Scholar
  5. 5.
    Rawlings J, Shah VK, Chisnell JR et al (1978) Novel metal cluster in the iron-molybdenum cofactor of nitrogenase. Spectroscopic evidence. J Biol Chem 253:1001–1004PubMedGoogle Scholar
  6. 6.
    Cramer SP, Gillum WO, Hodgson KO et al (1978) The molybdenum site of nitrogenase. 2. A comparative study of molybdenum-iron proteins and the iron-molybdenum cofactor by x-ray absorption spectroscopy. J Am Chem Soc 100:3814–3819CrossRefGoogle Scholar
  7. 7.
    Shah VK, Brill WJ (1977) Isolation of an iron-molybdenum cofactor from nitrogenase. Proc Natl Acad Sci USA 74:3249–3253PubMedCrossRefGoogle Scholar
  8. 8.
    Hu Y, Fay AW, Ribbe MW (2005) Identification of a nitrogenase FeMo cofactor precursor on NifEN complex. Proc Natl Acad Sci USA 102:3236–3241PubMedCrossRefGoogle Scholar
  9. 9.
    Kim CH, Newton WE, Dean DR (1995) Role of the MoFe protein alpha.-subunit histidine-195 residue in FeMo-cofactor binding and nitrogenase catalysis. Biochemistry 34:2798–2808PubMedCrossRefGoogle Scholar
  10. 10.
    Burgess BK (1990) The iron-molybdenum cofactor of nitrogenase. Chem Rev 90:1377–1406CrossRefGoogle Scholar
  11. 11.
    Eady RR, Lowe DJ, Thorneley RNF (1978) Nitrogenase of Klebsiella pneumoniae: A pre-steady state burst of ATP hydrolysis is coupled to electron transfer between the component proteins. FEBS Lett 95:211–213PubMedCrossRefGoogle Scholar
  12. 12.
    Davis LC, Shah VK, Brill WJ (1975) Nitrogenase: VII. Effect of component ratio, ATP and H2, on the distribution of electrons to alternative substrates. Biochim Biophys Acta 403:67–78PubMedGoogle Scholar
  13. 13.
    Burgess BK, Jacobs DB, Stiefel EI (1980) Large-scale purification of high activity Azotobacter vinelandii nitrogenase. Biochim Biophys Acta 614:196–209PubMedGoogle Scholar
  14. 14.
    Christiansen J, Goodwin PJ, Lanzilotta WN et al (1998) Catalytic and biophysical properties of a nitrogenase apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Biochemistry 37:12611–12623PubMedCrossRefGoogle Scholar
  15. 15.
    Lee CC, Hu Y, Ribbe MW (2009) Unique features of the nitrogenase VFe protein from Azotobacter vinelandii. Proc Natl Acad Sci USA 23:9209–9214CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jared A. Wiig
    • 1
  • Chi-Chung Lee
    • 1
  • Aaron W. Fay
    • 1
  • Yilin Hu
    • 1
  • Markus W. Ribbe
    • 1
    Email author
  1. 1.Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineUSA

Personalised recommendations