Molecular Biology and Genetic Engineering in Nitrogen Fixation

  • Patricia C. Dos SantosEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 766)


Biological nitrogen fixation is a complex and tightly regulated process limited to a group of prokaryotic species known as diazotrophs. Among well-studied diazotrophs, Azotobacter vinelandii is the best studied for its convenience of aerobic growth, its high levels of nitrogenase expression, and its genetic tractability. This chapter includes protocols and strategies in the molecular biology and genetic engineering of A. vinelandii that have been used as valuable tools for advancing studies on the biosynthesis, mechanism, and regulation of nitrogen fixation.

Key words

Competency transformation selection rescue congression Azotobacter vinelandii 


  1. 1.
    Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722PubMedCrossRefGoogle Scholar
  2. 2.
    Hu Y, Fay AW, Lee CC et al (2008) Assembly of nitrogenase MoFe protein. Biochemistry 47:3973–3981PubMedCrossRefGoogle Scholar
  3. 3.
    Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111PubMedCrossRefGoogle Scholar
  4. 4.
    Jacobson MR, Brigle KE, Bennett LT et al (1989) Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. J Bacteriol 171:1017–1027PubMedGoogle Scholar
  5. 5.
    Jacobson MR, Cash VL, Weiss MC et al (1989) Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet 219:49–57PubMedCrossRefGoogle Scholar
  6. 6.
    Imperial J, Ugalde RA, Shah VK et al (1984) Role of the nifQ gene product in the incorporation of molybdenum into nitrogenase in Klebsiella pneumoniae. J Bacteriol 158:187–194PubMedGoogle Scholar
  7. 7.
    Mayer SM, Lawson DM, Gormal CA et al (1999) New insights into structure-function relationships in nitrogenase: a 1.6 A resolution X-ray crystallographic study of Klebsiella pneumoniae MoFe-protein. J Mol Biol 292:871–891PubMedCrossRefGoogle Scholar
  8. 8.
    Brill WJ (1980) Biochemical genetics of nitrogen fixation. Microbiol Rev 44:449–467PubMedGoogle Scholar
  9. 9.
    Thorneley RNF, Eady RR (1973) Nitrogenase of Klebsiella pneumoniae: evidence for an adenosine triphosphate-induced association of the iron-sulphur protein. Biochem J 133:405–408.PubMedGoogle Scholar
  10. 10.
    Thorneley RNF, Lowe DJ (1983) Nitrogenase of Klebsiella pneumoniae – kinetics of the dissociation of oxidized iron protein from molybdenum iron protein – identification of the rate-limiting step for substrate reduction. Biochem J 215:393–403PubMedGoogle Scholar
  11. 11.
    Bolin JT, Ronco AE, Morgan TV et al (1993) The unusual metal clusters of nitrogenase: structural features revealed by x-ray anomalous diffraction studies of the MoFe protein from Clostridium pasteurianum. Proc Natl Acad Sci USA 90:1078–1082PubMedCrossRefGoogle Scholar
  12. 12.
    Einsle O, Tezcan FA, Andrade SLA et al (2002) Nitrogenase MoFe-protein at 1.16 A resolution: a central ligand in the FeMo-cofactor. Science 297:1696–1700PubMedCrossRefGoogle Scholar
  13. 13.
    Schmid B, Ribbe MW, Einsle O et al (2002) Structure of a cofactor-deficient nitrogenase MoFe protein. Science 296:352–356PubMedCrossRefGoogle Scholar
  14. 14.
    Curatti L, Brown CS, Ludden PW et al (2005) Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii. Proc Natl Acad Sci USA 102:6291–6296PubMedCrossRefGoogle Scholar
  15. 15.
    Esposito RG, Wilson PW (1958) Acetate as a calcium-sparing factor in nitrogen fixation by Azotobacter vinelandii. Proc Natl Acad Sci USA 44:472–476PubMedCrossRefGoogle Scholar
  16. 16.
    Pena C, Campos N, Galindo E (1997) Changes in alginate molecular mass distributions, broth viscosity and morphology of Azotobacter vinelandii cultured in shake flasks. Appl Microbiol Biotechnol 48:510–515CrossRefGoogle Scholar
  17. 17.
    Fallik E, Hartel PG, Robson RL (1993) Presence of a vanadium nitrogenase in Azotobacter paspali. Appl Environ Microbiol 59:1883–1886PubMedGoogle Scholar
  18. 18.
    Kennedy C, Rudnick P, MacDonald ML et al (2005) Genus III. Azotobacter Beijerinck 1901, 567al. In: Brenner DJ, Noel RK, Staley JT, Garrity GM (eds) Bergey’s Manual of Systematic Bacteriology – The Proteobacteria, pp. 384–402. Springer, New York, NYGoogle Scholar
  19. 19.
    Mayer SM, Dos Santos PC, Seefeldt LC et al (2002) Use of short-chain alkynes to locate the nitrogenase catalytic site. In: Leigh GJ (ed) Nitrogen Fixation at the Millennium, pp. 137–154. Elsevier Science, Brighton, UKCrossRefGoogle Scholar
  20. 20.
    Chen YP, Lopezdevictoria G, Lovell CR (1993) Utilization of aromatic-compounds as carbon and energy-sources during growth and N-2-fixation by free-living nitrogen-fixing bacteria. Arch Microbiol 159:207–212CrossRefGoogle Scholar
  21. 21.
    Upchurch RG, Mortenson LE (1980) In vivo energetics and control of nitrogen fixation: changes in the adenylate energy charge and adenosine 5'-diphosphate/adenosine 5'- triphosphate ratio of cells during growth on dinitrogen versus growth on ammonia. J Bacteriol 143:274–284PubMedGoogle Scholar
  22. 22.
    Shah VK, Davis LC, Brill WJ (1972) Nitrogenase. I. Repression and derepression of the iron-molybdenum and iron proteins of nitrogenase in Azotobacter vinelandii. Biochim Biophys Acta 256:498–511PubMedCrossRefGoogle Scholar
  23. 23.
    Christiansen J, Goodwin PJ, Lanzilotta WN et al (1998) Catalytic and biophysical properties of a nitrogenase apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Biochemistry 37:12611–12623PubMedCrossRefGoogle Scholar
  24. 24.
    Goodwin PJ, Agar JN, Roll JT et al (1998) The Azotobacter vinelandii NifEN complex contains two identical [4Fe-4S] clusters. Biochemistry 37:10420–10428PubMedCrossRefGoogle Scholar
  25. 25.
    Page WJ, von Tigerstrom M (1979) Optimal conditions for the transformation of Azotobacter vinelandii. J Bacteriol 139:1058–1061PubMedGoogle Scholar
  26. 26.
    Bishop PE, Premakumar R, Dean DR et al (1986) Nitrogen fixation by Azotobacter vinelandii strains having deletions in structural genes for nitrogenase. Science 232:92–94PubMedCrossRefGoogle Scholar
  27. 27.
    Bush JA, Wilson PW (1959) A non-gummy chromogenic strain of Azotobacter vinelandii. Nature 184:381–384CrossRefGoogle Scholar
  28. 28.
    Kennedy C, Bishop PE (2004) Genetics of nitrogen fixation and related aspects of metabolism in species of Azotobacter: history and current status. In: Klipp W, Masepohl B, Gallon JR, Newton WE (eds) Genetics and Regulation of Nitrogen Fixation in Free-Living Bacteria, pp. 27–44. Kluwer, DordrechtGoogle Scholar
  29. 29.
    Martinez-Salazar JM, Moreno S, Najera R et al (1996) Characterization of the genes coding for the putative sigma factor AlgU and its regulators MucA, MucB, MucC, and MucD in Azotobacter vinelandii and evaluation of their roles in alginate biosynthesis. J Bacteriol 178:1800–1808PubMedGoogle Scholar
  30. 30.
    Setubal JC, Dos Santos P, Goldman BS et al (2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 191:4534–4545PubMedCrossRefGoogle Scholar
  31. 31.
    Page W, von Tigerstrom M (1979) Optimal conditions for transformation of Azotobacter vinelandii. J Bacteriol 139:1058–1061PubMedGoogle Scholar
  32. 32.
    Page WJ, Grant GA (1987) Effect of mineral iron on the development of transformation competence in Azotobacter vinelandii. Fems Microbiol Lett 41:257–261CrossRefGoogle Scholar
  33. 33.
    Doran JL, Page WJ (1983) Heat sensitivity of Azotobacter vinelandii genetic transformation. J Bacteriol 155:159–168PubMedGoogle Scholar
  34. 34.
    Venkatesh TV, Reddy MA, Das HK (1990) Cloning and characterization of the Azotobacter vinelandii recA gene and construction of a recA deletion mutant. Mol Gen Genet 224:482–486PubMedCrossRefGoogle Scholar
  35. 35.
    Johnson DC, Unciuleac MC, Dean DR (2006) Controlled expression and functional analysis of iron-sulfur cluster biosynthetic components within Azotobacter vinelandii. J Bacteriol 188:7551–7561PubMedCrossRefGoogle Scholar
  36. 36.
    Kennedy C, Gamal R, Humphrey R et al (1986) The nifH, nifM and nifN genes of Azotobcater vinelandii: characterisation by Tn5 mutagenesis and isolation from pLAFR1 gene banks. Mol Gen Genet 205:318–325CrossRefGoogle Scholar
  37. 37.
    Wu G, Hill S, Kelly MJ et al (1997) The cydR gene product, required for regulation of cytochrome bd expression in the obligate aerobe Azotobacter vinelandii, is an Fnr- like protein. Microbiology 143:2197–2207PubMedCrossRefGoogle Scholar
  38. 38.
    Contreras A, Maldonado R, Casadesus J (1991) Tn5 mutagenesis and insertion replacement in Azotobacter vinelandii. Plasmid 25:76–80PubMedCrossRefGoogle Scholar
  39. 39.
    Brigle KE, Setterquist RA, Dean DR et al (1987) Site-directed mutagenesis of the nitrogenase MoFe protein of Azotobacter vinelandii. Proc Natl Acad Sci USA 84:7066–7069PubMedCrossRefGoogle Scholar
  40. 40.
    Dos Santos PC, Johnson DC, Ragle BE et al (2007) Controlled expression of nif and isc iron-sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems. J Bacteriol 189:2854–2862PubMedCrossRefGoogle Scholar
  41. 41.
    Robinson AC, Dean DR, Burgess BK (1987) Iron-molybdenum cofactor biosynthesis in Azotobacter vinelandii requires the iron protein of nitrogenase. J Biol Chem 262:14327–14332PubMedGoogle Scholar
  42. 42.
    Walmsley J, Toukdarian A, Kennedy C (1994) The role of regulatory genes nifA, vnfA, anfA, nfrX, ntrC, and rpoN in expression of genes encoding the three nitrogenases of Azotobacter vinelandii. Arch Microbiol 162:422–429PubMedCrossRefGoogle Scholar
  43. 43.
    Premakumar R, Loveless TM, Bishop PE (1994) Effect of amino acid substitutions in a potential metal-binding site of AnfA on expression from the anfH promoter in Azotobacter vinelandii. J Bacteriol 176:6139–6142PubMedGoogle Scholar
  44. 44.
    Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, New York, NYGoogle Scholar
  45. 45.
    Christiansen J, Cash VL, Seefeldt LC et al (2000) Isolation and characterization of an acetylene-resistant nitrogenase. J Biol Chem 275:11459–11464PubMedCrossRefGoogle Scholar
  46. 46.
    Bertsova YV, Bogachev AV, Skulachev VP (2001) Noncoupled NADH:ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. J Bacteriol 183:6869–6874PubMedCrossRefGoogle Scholar
  47. 47.
    Fang FC, Helinski DR (1991) Broad-host-range properties of plasmid RK2: importance of overlapping genes encoding the plasmid replication initiation protein TrfA. J Bacteriol 173: 5861–5868PubMedGoogle Scholar
  48. 48.
    Peralta-Gil M, Segura D, Guzman J et al (2002) Expression of the Azotobacter vinelandii poly-beta-hydroxybutyrate biosynthetic phbBAC operon is driven by two overlapping promoters and is dependent on the transcriptional activator PhbR. J Bacteriol 184:5672–5677PubMedCrossRefGoogle Scholar
  49. 49.
    Kelly MJ, Poole RK, Yates MG et al (1990) Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air. J Bacteriol 172:6010–6019PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of ChemistryWake Forest UniversityWiston-SalemUSA

Personalised recommendations