Advertisement

Genomic Analysis of Nitrogen Fixation

  • Ina P. O’Carroll
  • Patricia C. Dos SantosEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 766)

Abstract

Advances in sequencing technology in the past decade have enabled the sequencing of genomes of thousands of organisms including diazotrophs. Genomics have enabled thorough analysis of the gene organization of nitrogen-fixing species, the identification of new genes involved in nitrogen fixation, and the identification of new diazotrophic species. This chapter reviews key characteristics of nitrogen-fixing genomes and methods to identify and analyze genomes of new diazotrophs using genome scanning. This chapter refers to Azotobacter vinelandii, a well-studied nitrogen-fixing organism, as a model for studying nitrogen-fixing genomes. We discuss the main nitrogen fixation genes as well as accessory genes that contribute to diazotrophy. We also review approaches that can be used to modify genomes in order to study nitrogen fixation at the genetic, biochemical, and biophysical level.

Key words

Genome sequencing genome scanning genomics Azotobacter vinelandii nitrogen fixation 

References

  1. 1.
    Postgate JR (1982) The nitrogen cycle. Philos Trans R Soc Lond B 296:375–385CrossRefGoogle Scholar
  2. 2.
    Hill S, Kennedy C, Kavanagh E et al (1981) Nitrogen fixation gene (nifL) involved in oxygen regulation of nitrogenase synthesis in Klebsiella pneumoniae. Nature 290:424–426PubMedCrossRefGoogle Scholar
  3. 3.
    Weidner S, Puhler A, Kuster H (2003) Genomics insights into symbiotic nitrogen fixation. Curr Opin Biotechnol 14:200–205PubMedCrossRefGoogle Scholar
  4. 4.
    Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722PubMedCrossRefGoogle Scholar
  5. 5.
    Ribbe M, Gadkari D, Meyer O (1997) N2 fixation by Streptomyces thermoautotrophicus involves a molybdenum- dinitrogenase and a manganese-superoxide oxidoreductase that couple N2 reduction to the oxidation of superoxide produced from O2 by a molybdenum-CO dehydrogenase. J Biol Chem 272:26627–26633PubMedCrossRefGoogle Scholar
  6. 6.
    Cummings SP, Gyaneshwar P, Vinuesa P et al (2009) Nodulation of Sesbania species by Rhizobium (Agrobacterium) strain IRBG74 and other rhizobia. Environ Microbiol 11:2510–2525PubMedCrossRefGoogle Scholar
  7. 7.
    Mohamed NM, Colman AS, Tal Y et al (2008) Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. Environ Microbiol 10:2910–2921PubMedCrossRefGoogle Scholar
  8. 8.
    Zehr JP, Jenkins BD, Short SM et al (2003) Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ Microbiol 5:539–554PubMedCrossRefGoogle Scholar
  9. 9.
    Dedysh SN, Ricke P, Liesack W (2004) NifH and NifD phylogenies: an evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology 150:1301–1313PubMedCrossRefGoogle Scholar
  10. 10.
    Raymond J, Siefert JL, Staples CR et al (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554PubMedCrossRefGoogle Scholar
  11. 11.
    Henson BJ, Watson LE, Barnum SR (2004) The evolutionary history of nitrogen fixation, as assessed by NifD. J Mol Evol 58:390–399PubMedCrossRefGoogle Scholar
  12. 12.
    Betancourt DA, Loveless TM, Brown JW et al (2008) Characterization of diazotrophs containing Mo-independent nitrogenases, isolated from diverse natural environments. Appl Environ Microbiol 74:3471–3480PubMedCrossRefGoogle Scholar
  13. 13.
    Brigle KE, Weiss CM, Newton WE et al (1987) Products of the iron-molybdenum cofactor-specific biosynthetic genes, nifE and nifN, are structurally homologous to the products of the nitrogenase molybdenum-iron protein genes, nifH and nifK. J Bacteriol 169:1547–1553PubMedGoogle Scholar
  14. 14.
    Wolfinger ED, Bishop PE (1991) Nucleotide sequence and mutational analysis of the vnfENX region of Azotobacter vinelandii. J Bacteriol 173:7565–7572PubMedGoogle Scholar
  15. 15.
    Watzlich D, Brocker MJ, Uliczka F et al (2009) Chimeric nitrogenase-like enzymes of (bacterio)chlorophyll biosynthesis. J Biol Chem 284:15530–15540PubMedCrossRefGoogle Scholar
  16. 16.
    Yamamoto H, Kurumiya S, Ohashi R et al (2009) Oxygen sensitivity of a nitrogenase-like protochlorophyllide reductase from the cyanobacterium Leptolyngbya boryana. Plant Cell Physiol 50:1663–1673PubMedCrossRefGoogle Scholar
  17. 17.
    Kennedy C, Rudnick P, MacDonald ML et al (2005) Genus III. Azotobacter Beijerinck 1901, 567al. In: Brenner DJ, Noel RK, Staley JT, Garrity GM (eds) Bergey’s Manual of Systematic Bacteriology—The Proteobacteria, pp. 384–402. Springer, New York, NYGoogle Scholar
  18. 18.
    Setubal JC, Dos Santos PC, Goldman BS et al (2009) Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes. J Bacteriol 191:4534–4545PubMedCrossRefGoogle Scholar
  19. 19.
    Yan Y, Yang J, Dou Y et al (2008) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci USA 105:7564–7569PubMedCrossRefGoogle Scholar
  20. 20.
    Lalucat J, Bennasar A, Bosch R et al (2006) Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70:510–547PubMedCrossRefGoogle Scholar
  21. 21.
    Desnoues N, Lin M, Guo X et al (2003) Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. Microbiology 149:2251–2262PubMedCrossRefGoogle Scholar
  22. 22.
    Dingler C, Kuhla J, Wassink H et al (1988) Levels and activities of nitrogenase proteins in Azotobacter vinelandii grown at different dissolved oxygen concentrations. J Bacteriol 170:2148–2152PubMedGoogle Scholar
  23. 23.
    Oelze J (2000) Respiratory protection of nitrogenase in Azotobacter species: is a widely held hypothesis unequivocally supported by experimental evidence? FEMS Microbiol Rev 24:321–333PubMedCrossRefGoogle Scholar
  24. 24.
    Curatti L, Brown CS, Ludden PW et al (2005) Genes required for rapid expression of nitrogenase activity in Azotobacter vinelandii. Proc Natl Acad Sci USA 102:6291–6296PubMedCrossRefGoogle Scholar
  25. 25.
    Wu G, Hill S, Kelly MJ et al (1997) The cydR gene product, required for regulation of cytochrome bd expression in the obligate aerobe Azotobacter vinelandii, is an Fnr- like protein. Microbiology 143:2197–2207PubMedCrossRefGoogle Scholar
  26. 26.
    Kelly MJ, Poole RK, Yates MG et al (1990) Cloning and mutagenesis of genes encoding the cytochrome bd terminal oxidase complex in Azotobacter vinelandii: mutants deficient in the cytochrome d complex are unable to fix nitrogen in air. J Bacteriol 172:6010–6019PubMedGoogle Scholar
  27. 27.
    Jacobson MR, Brigle KE, Bennett LT et al (1989) Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. J Bacteriol 171:1017–1027PubMedGoogle Scholar
  28. 28.
    Joerger RD, Bishop PE (1988) Nucleotide sequence and genetic analysis of the nifB-nifQ region from Azotobacter vinelandii. J Bacteriol 170:1475–1487PubMedGoogle Scholar
  29. 29.
    Joerger RD, Loveless TM, Pau RN et al (1990) Nucleotide-sequences and mutational analysis of the structural genes for nitrogenase-2 of Azotobacter vinelandii. J Bacteriol 172:3400–3408PubMedGoogle Scholar
  30. 30.
    Joerger RD, Jacobson MR, Premakumar R et al (1989) Nucleotide-sequence and mutational analysis of the structural genes (anfhdgk) for the 2nd alternative nitrogenase from Azotobacter vinelandii. J Bacteriol 171:1075–1086PubMedGoogle Scholar
  31. 31.
    Jacobson MR, Cash VL, Weiss MC et al (1989) Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Mol Gen Genet 219:49–57PubMedCrossRefGoogle Scholar
  32. 32.
    Rodriguez-Quinones F, Bosch R, Imperial J (1993) Expression of the nifBfdxNnifOQ region of Azotobacter vinelandii and its role in nitrogenase activity. J Bacteriol 175:2926–2935PubMedGoogle Scholar
  33. 33.
    Lee CC, Hu Y, Ribbe MW (2009) Unique features of the nitrogenase VFe protein from Azotobacter vinelandii. Proc Natl Acad Sci USA 106:9209–9214PubMedCrossRefGoogle Scholar
  34. 34.
    Woodley P, Buck M, Kennedy C (1996) Identification of sequences important for recognition of vnf genes by the VnfA transcriptional activator in Azotobacter vinelandii. FEMS Microbiol Lett 135:213–221PubMedCrossRefGoogle Scholar
  35. 35.
    Walmsley J, Toukdarian A, Kennedy C (1994) The role of regulatory genes nifA, vnfA, anfA, nfrX, ntrC, and rpoN in expression of genes encoding the three nitrogenases of Azotobacter vinelandii. Arch Microbiol 162:422–429PubMedCrossRefGoogle Scholar
  36. 36.
    Ruttimann-Johnson C, Rubio LM, Dean DR et al (2003) VnfY is required for full activity of the vanadium-containing dinitrogenase in Azotobacter vinelandii. J Bacteriol 185:2383–2386PubMedCrossRefGoogle Scholar
  37. 37.
    Ruttimann-Johnson C, Staples CR, Rangaraj P et al (1999) A vanadium and iron cluster accumulates on VnfX during iron-vanadium- cofactor synthesis for the vanadium nitrogenase in Azotobacter vinelandii. J Biol Chem 274:18087–18092PubMedCrossRefGoogle Scholar
  38. 38.
    Pau RN, Eldridge ME, Lowe DJ et al (1993) Molybdenum-independent nitrogenases of Azotobacter vinelandii: a functional species of alternative nitrogenase-3 isolated from a molybdenum-tolerant strain contains an iron-molybdenum cofactor. Biochemistry 293:101–107Google Scholar
  39. 39.
    Premakumar R, Loveless TM, Bishop PE (1994) Effect of amino acid substitutions in a potential metal-binding site of AnfA on expression from the anfH promoter in Azotobacter vinelandii. J Bacteriol 176:6139–6142PubMedGoogle Scholar
  40. 40.
    Mylona PV, Premakumar R, Pau RN et al (1996) Characteristics of orf1 and orf2 in the anfHDGK genomic region encoding nitrogenase 3 of Azotobacter vinelandii. J Bacteriol 178:204–208PubMedGoogle Scholar
  41. 41.
    Kennedy C, Dean D (1992) The nifU, nifS and nifV gene products are required for activity of all three nitrogenases of Azotobacter vinelandii. Mol Gen Genet 231:494–498PubMedCrossRefGoogle Scholar
  42. 42.
    Lei S, Pulakat L, Gavini N (1999) Regulated expression of the nifM of Azotobacter vinelandii in response to molybdenum and vanadium supplements in Burk’s nitrogen-free growth medium. Biochem Biophys Res Commun 264:186–190PubMedCrossRefGoogle Scholar
  43. 43.
    Dixon R (1998) The oxygen-responsive NIFL-NIFA complex: A novel two-component regulatory system controlling nitrogenase synthesis in gamma- proteobacteria. Arch Microbiol 169:371–380PubMedCrossRefGoogle Scholar
  44. 44.
    Martinez-Argudo I, Little R, Shearer N et al (2004) The NifL-NifA system: A multidomain transcriptional regulatory complex that integrates environmental signals. J Bacteriol 186:601–610PubMedCrossRefGoogle Scholar
  45. 45.
    Premakumar R, Jacobson MR, Loveless TM et al (1992) Characterization of transcripts expressed from nitrogenase-3 structural genes of Azotobacter vinelandii. Can J Microbiol 38:929–936PubMedCrossRefGoogle Scholar
  46. 46.
    Luque F, Mitchenall LA, Chapman M et al (1993) Characterization of genes involved in molybdenum transport in Azotobacter vinelandii. Mol Microbiol 7:447–459PubMedCrossRefGoogle Scholar
  47. 47.
    Knosp O, von Tigerstrom M, Page WJ (1984) Siderophore-mediated uptake of iron in Azotobacter vinelandii. J Bacteriol 159:341–347PubMedGoogle Scholar
  48. 48.
    Schmehl M, Jahn A, Meyer zu Vilsendorf A et al (1993) Identification of a new class of nitrogen fixation genes in Rhodobacter capsulatus: a putative membrane complex involved in electron transport to nitrogenase. Mol Gen Genet 241:602–615PubMedCrossRefGoogle Scholar
  49. 49.
    Moshiri F, Kim JW, Fu C et al (1994) The FeSII protein of Azotobacter vinelandii is not essential for aerobic nitrogen fixation, but confers significant protection to oxygen- mediated inactivation of nitrogenase in vitro and in vivo. Mol Microbiol 14:101–114PubMedCrossRefGoogle Scholar
  50. 50.
    Page W, Von Tigerstrom M (1979) Optimal conditions for transformation of Azotobacter vinelandii. J Bacteriol 139:1058–1061PubMedGoogle Scholar
  51. 51.
    Bishop PE, Premakumar R, Dean DR et al (1986) Nitrogen fixation by Azotobacter vinelandii strains having deletions in structural genes for nitrogenase. Science 232:92–94PubMedCrossRefGoogle Scholar
  52. 52.
    Brigle KE, Setterquist RA, Dean DR (1987) Site-directed mutagenesis of the nitrogenase MoFe protein of Azotobacter vinelandii. Proc Natl Acad Sci USA 84:7066–7069PubMedCrossRefGoogle Scholar
  53. 53.
    Morgan TV, Lundell DJ, Burgess BK (1988) Azotobacter vinelandii ferredoxin I: cloning, sequencing, and mutant analysis. J Biol Chem 263:1370–1375PubMedGoogle Scholar
  54. 54.
    Robinson AC, Burgess BK, Dean DR (1986) Activity, reconstitution, and accumulation of nitrogenase components in Azotobacter vinelandii mutant strains containing defined deletions within the nitrogenase structural gene-cluster. J Bacteriol 166:180–186PubMedGoogle Scholar
  55. 55.
    Johnson DC, Unciuleac MC, Dean DR (2006) Controlled expression and functional analysis of iron-sulfur cluster biosynthetic components within Azotobacter vinelandii. J Bacteriol 188:7551–7561PubMedCrossRefGoogle Scholar
  56. 56.
    Suh MH, Pulakat L, Gavini N (2003) Functional expression of a fusion-dimeric MoFe protein of nitrogenase in Azotobacter vinelandii. J Biol Chem 278:5353–5360PubMedCrossRefGoogle Scholar
  57. 57.
    Wang SZ, Dean DR, Chen JS et al (1991) The N-terminal and C-terminal portions of NifV are encoded by two different genes in Clostridium pasteurianum. J Bacteriol 173:3041–3046PubMedGoogle Scholar
  58. 58.
    Christiansen J, Goodwin PJ, Lanzilotta WN et al (1998) Catalytic and biophysical properties of a nitrogenase apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Biochemistry 37:12611–12623PubMedCrossRefGoogle Scholar
  59. 59.
    Hu Y, Corbett MC, Fay AW et al (2006) FeMo cofactor maturation on NifEN. Proc Natl Acad Sci USA 103:17119–17124PubMedCrossRefGoogle Scholar
  60. 60.
    Raulfs EC, O‘Carroll IP, Dos Santos PC et al (2008) In vivo iron-sulfur cluster formation. Proc Natl Acad Sci USA 105:8591–8596PubMedCrossRefGoogle Scholar
  61. 61.
    Rubio LM, Ludden PW (2008) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annu Rev Microbiol 62:93–111PubMedCrossRefGoogle Scholar
  62. 62.
    Hu Y, Fay AW, Lee CC et al (2008) Assembly of nitrogenase MoFe protein. Biochemistry 47:3973–3981PubMedCrossRefGoogle Scholar
  63. 63.
    Jones CW, Brice JM, Wright V et al (1973) Respiratory protection of nitrogenase in Azotobacter vinelandii. FEBS Lett 29:77–81PubMedCrossRefGoogle Scholar
  64. 64.
    Goodwin PJ, Agar JN, Roll JT et al (1998) The Azotobacter vinelandii NifEN complex contains two identical [4Fe-4S] clusters. Biochemistry 37:10420–10428PubMedCrossRefGoogle Scholar
  65. 65.
    Hu Y, Fay AW, Ribbe MW (2005) Identification of a nitrogenase FeMo cofactor precursor on NifEN complex. Proc Natl Acad Sci USA 102:3236–3241PubMedCrossRefGoogle Scholar
  66. 66.
    Soboh B, Igarashi RY, Hernandez JA et al (2006) Purification of a nifEN protein complex that contains bound Mo and a FeMo-co precursor from an Azotobacter vinelandii delta nifHDK strain. J Biol Chem 281:36701–36709PubMedCrossRefGoogle Scholar
  67. 67.
    Curatti L, Ludden PW, Rubio LM (2006) NifB-dependent in vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Proc Natl Acad Sci USA 103:5297–5301PubMedCrossRefGoogle Scholar
  68. 68.
    Johnson DC, Dos Santos PC, Dean DR (2005) NifU and NifS are required for the maturation of nitrogenase and cannot replace the function of isc-gene products in Azotobacter vinelandii. Biochem Soc Trans 33:90–93PubMedCrossRefGoogle Scholar
  69. 69.
    Dos Santos PC, Johnson DC, Ragle BE et al (2007) Controlled expression of nif and isc iron-sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems. J Bacteriol 189:2854–2862PubMedCrossRefGoogle Scholar
  70. 70.
    Mouncey NJ, Mitchenall LA, Pau RN (1995) Mutational analysis of genes of the mod locus involved in molybdenum transport, homeostasis and processing in Azotobacter vinelandii. J Bacteriol 177:5294–5302PubMedGoogle Scholar
  71. 71.
    Bertsova YV, Bogachev AV, Skulachev VP (2001) Noncoupled NADH:ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations. J Bacteriol 183:6869–6874PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.HIV Drug Resistance ProgramNational Cancer Institute at FrederickFrederickUSA
  2. 2.Department of ChemistryWake Forest UniversityWiston-SalemUSA

Personalised recommendations