Modeling the MoFe Nitrogenase System with Broken Symmetry Density Functional Theory

  • Gregory M. Sandala
  • Louis NoodlemanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 766)


Density functional theory (DFT) represents a unified framework for gaining molecular level insight into molybdenum–iron (MoFe) nitrogenase. However, accurately describing the electronic structure of the spin-polarized and spin-coupled iron–molybdenum cofactor (FeMo-co) where N2 reduction occurs within MoFe nitrogenase is challenging. Therefore, the enhancement of DFT to include broken symmetry (BS-DFT) plus approximate spin projection has proven valuable because it provides a procedure to compute reliable geometries, energies, redox potentials, and quantities relevant to Mössbauer and ENDOR spectroscopies. After describing the theoretical tools necessary to obtain this information, we show by way of examples how BS-DFT is a very powerful partner to experiment. We expect that quantitative quantum chemical theory of this type will play an ever-increasing role in helping to decipher complex bioinorganic systems like those found in MoFe nitrogenase.

Key words

Density functional theory (DFT) broken symmetry spin coupling spin polarization spin projection techniques redox potentials Mössbauer parameters ENDOR hyperfine parameters FeMo cofactor iron–sulfur clusters 



The authors would like to acknowledge the other contributors to our nitrogenase work, whose names appear throughout the reference section. Most recently, Vladimir Pelmenschikov and David A. Case have made substantial contributions. We also gratefully acknowledge financial support by NIH grant GM039914.


  1. 1.
    Howard JB, Rees DC (2006) How many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation. Proc Natl Acad Sci USA 103:17088–17093PubMedCrossRefGoogle Scholar
  2. 2.
    See, for example: Howard JB, Rees DC (1996) Structural basis of biological nitrogen fixation. Chem Rev 96:2965–2982, and references therein.CrossRefGoogle Scholar
  3. 3.
    Dos Santos PC, Dean DR, Hu YL et al (2004) Formation and insertion of the nitrogenase iron–molybdenum cofactor. Chem Rev 104:1159–1173PubMedCrossRefGoogle Scholar
  4. 4.
    Lukoyanov D, Yang ZY, Dean DR et al (2010) Is Mo involved in hydride binding by the four-electron reduced (E4) intermediate of the nitrogenase MoFe protein? J Am Chem Soc 132:2526–2527PubMedCrossRefGoogle Scholar
  5. 5.
    Sanakis Y, Power PP, Stubna A et al (2002) Mössbauer study of the three-coordinate planar FeII thiolate complex [Fe(SR)3] (R = C6H2-2,4,6-tBu3): Model for the trigonal iron sites of the MoFe7S9:homocitrate cofactor of nitrogenase. Inorg Chem 41:2690–2696PubMedCrossRefGoogle Scholar
  6. 6.
    Einsle O, Tezcan FA, Andrade SLA et al (2002) Nitrogenase MoFe-protein at 1.16 angstrom resolution: A central ligand in the FeMo-cofactor. Science 297:1696–1700PubMedCrossRefGoogle Scholar
  7. 7.
    Lee HI, Hales BJ, Hoffman BM (1997) Metal-ion valencies of the FeMo cofactor in CO-inhibited and resting state nitrogenase by 57Fe Q-Band ENDOR. J Am Chem Soc 119:11395–11400CrossRefGoogle Scholar
  8. 8.
    Noodleman L, Lovell T, Han WG et al (2004) Quantum chemical studies of intermediates and reaction pathways in selected enzymes and catalytic synthetic systems. Chem Rev 104:459–508PubMedCrossRefGoogle Scholar
  9. 9.
    For an introductory text on the general principles of DFT see, for example: Koch W, Holthausen MC (2002) A chemist’s guide to density functional theory, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  10. 10.
    Noodleman L (1981) Valence bond description of anti-ferromagnetic coupling in transition metal dimers. J Chem Phys 74:5737–5743CrossRefGoogle Scholar
  11. 11.
    For more on these issues see, for example: Noodleman L, Lovell T, Liu T et al (2002) Insights into properties and energetics of iron–sulfur proteins from simple clusters to nitrogenase. Curr Opin Chem Biol 6:259–273PubMedCrossRefGoogle Scholar
  12. 12.
    Swart M, Groenhof AR, Ehlers AW et al (2004) Validation of exchange–correlation functionals for spin states of iron complexes. J Phys Chem A 108:5479–5483CrossRefGoogle Scholar
  13. 13.
    Swart M, Ehlers AW, Lammertsma K (2004) Performance of the OPBE exchange-correlation functional. Mol Phys 102:2467–2474CrossRefGoogle Scholar
  14. 14.
    Noodleman L, Han WG (2006) Structure, redox, pK a, spin. A golden tetrad for understanding metalloenzyme energetics and reaction pathways. J Biol Inorg Chem 11:674–694PubMedCrossRefGoogle Scholar
  15. 15.
    Han WG, Noodleman L (2008) Structural model studies for the high-valent intermediate Q of methane monooxygenase from broken-symmetry density functional calculations. Inorg Chim Acta 361:973–986CrossRefGoogle Scholar
  16. 16.
    Sinnecker S, Neese F, Noodleman L et al (2004) Calculating the electron paramagnetic resonance parameters of exchange coupled transition metal complexes using broken symmetry density functional theory: Application to a MnIII/MnIV model compound. J Am Chem Soc 126:2613–2622PubMedCrossRefGoogle Scholar
  17. 17.
    Mouesca JM, Noodleman L, Case DA et al (1995) Spin-densities and spin coupling in iron–sulfur clusters - A new analysis of hyperfine coupling-constants. Inorg Chem 34:4347–4359CrossRefGoogle Scholar
  18. 18.
    Neese F (2002) Prediction and interpretation of the 57Fe isomer shift in Mössbauer spectra by density functional theory. Inorg Chim Acta 337:181–192CrossRefGoogle Scholar
  19. 19.
    Hopmann KH, Ghosh A, Noodleman L (2009) Density functional theory calculations on Mössbauer parameters of nonheme iron nitrosyls. Inorg Chem 48: 9155–9165PubMedCrossRefGoogle Scholar
  20. 20.
    Fee JA, Findling KL, Yoshida T et al (1984) Purification and characterization of the rieske iron–sulfur protein from Thermus thermophilus - evidence for a [2Fe-2S] cluster having non-cysteine ligands. J Biol Chem 259:124–133PubMedGoogle Scholar
  21. 21.
    Han WG, Liu TQ, Lovell T et al (2006) DFT calculations of 57Fe Mössbauer isomer shifts and quadrupole splittings for iron complexes in polar dielectric media: Applications to methane monooxygenase and ribonucleotide reductase. J Comput Chem 27:1292–1306PubMedCrossRefGoogle Scholar
  22. 22.
    See, for example: Yoo SJ, Angove HC, Papaefthymiou V et al (2000) Mössbauer study of the MoFe protein of nitrogenase from Azotobacter vinelandii using selective 57Fe enrichment of the M-centers. J Am Chem Soc 122:4926–4936, and references therein.CrossRefGoogle Scholar
  23. 23.
    Lovell T, Li J, Case DA et al (2002) FeMo cofactor of nitrogenase: Energetics and local interactions in the protein environment. J Biol Inorg Chem 7:735–749PubMedCrossRefGoogle Scholar
  24. 24.
    Torres RA, Lovell T, Noodleman L et al (2003) Density functional and reduction potential calculations of Fe4S4 clusters. J Am Chem Soc 125:1923–1936PubMedCrossRefGoogle Scholar
  25. 25.
    Li J, Nelson MR, Peng CY et al (1998) Incorporating protein environments in density functional theory: A self-consistent reaction field calculation of redox potentials of [2Fe2S] clusters in ferredoxin and phthalate dioxygenase reductase. J Phys Chem A 102:6311–6324CrossRefGoogle Scholar
  26. 26.
    See, for example: Noodleman L, Case DA (2009) Broken symmetry states of iron–sulfur clusters. In: Solomon EI, Scott RA, King RB (eds) Computational Inorganic and Bioinorganic Chemistry, pp. 213–228. Wiley, New York, NYGoogle Scholar
  27. 27.
    Tissandier MD, Cowen KA, Feng WY et al (1998) The proton’s absolute aqueous enthalpy and Gibbs free energy of solvation from cluster-ion solvation data. J Phys Chem A 102:7787–7794CrossRefGoogle Scholar
  28. 28.
    Lewis A, Bumpus JA, Truhlar DG et al (2004) Molecular modeling of environmentally important processes: Reduction potentials. J Chem Educ 81:596–604CrossRefGoogle Scholar
  29. 29.
    Lewis A, Bumpus JA, Truhlar DG et al (2007) Molecular modeling of environmentally important processes: Reduction potentials. J Chem Educ 84:934Google Scholar
  30. 30.
    Fee JA, Case DA, Noodleman L (2008) Toward a chemical mechanism of proton pumping by the B-type cytochrome c oxidases: Application of density functional theory to cytochrome ba(3) of Thermus thermophilus. J Am Chem Soc 130:15002–15021PubMedCrossRefGoogle Scholar
  31. 31.
    Lee HI, Hales BJ, Hoffman BM (1997) Metal-ion valencies of the FeMo cofactor in CO-inhibited and resting state nitrogenase by 57Fe Q-band ENDOR. J Am Chem Soc 119:11395–11400CrossRefGoogle Scholar
  32. 32.
    Yoo SJ, Angove HC, Papaefthymiou V et al (2000) Mössbauer study of the MoFe protein of nitrogenase from Azotobacter vinelandii using selective 57Fe enrichment of the M-centers. J Am Chem Soc 122:4926–4936CrossRefGoogle Scholar
  33. 33.
    Lovell T, Li J, Liu TQ et al (2001) FeMo cofactor of nitrogenase: A density functional study of states MN, MOX, MR, and MI. J Am Chem Soc 123:12392–12410PubMedCrossRefGoogle Scholar
  34. 34.
    Ullmann GM, Noodleman L, Case DA (2002) Density functional calculation of pK a values and redox potentials in the bovine rieske iron–sulfur protein. J Biol Inorg Chem 7:632–639PubMedCrossRefGoogle Scholar
  35. 35.
    Lovell T, Liu TQ, Case DA et al (2003) Structural, spectroscopic, and redox consequences of central ligand in the FeMoco of nitrogenase: A density functional theoretical study. J Am Chem Soc 125:8377–8383PubMedCrossRefGoogle Scholar
  36. 36.
    Lukoyanov D, Pelmenschikov V, Maeser N et al (2007) Testing if the interstitial atom, X, of the nitrogenase molybdenum–iron cofactor is N or C: ENDOR, ESEEM, and DFT studies of the S = 3/2 resting state in multiple environments. Inorg Chem 46:11437–11449PubMedCrossRefGoogle Scholar
  37. 37.
    Yang TC, Maeser NK, Laryukhin M et al (2005) The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM evidence that it is not a nitrogen. J Am Chem Soc 127:12804–12805PubMedCrossRefGoogle Scholar
  38. 38.
    See, for example: Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722CrossRefGoogle Scholar
  39. 39.
    Igarashi RY, Dos Santos PC, Niehaus WG et al (2004) Localization of a catalytic intermediate bound to the FeMo-cofactor of nitrogenase. J Biol Chem 279:34770–34775PubMedCrossRefGoogle Scholar
  40. 40.
    Pelmenschikov V, Case DA, Noodleman L (2008) Ligand-bound S = 1/2 FeMo-cofactor of nitrogenase: Hyperfine interaction analysis and implication for the central ligand X identity. Inorg Chem 47:6162–6172PubMedCrossRefGoogle Scholar
  41. 41.
    Peters JW, Szilagyi RK (2006) Exploring new frontiers of nitrogenase structure and mechanism. Curr Opin Chem Biol 10:101–108PubMedCrossRefGoogle Scholar
  42. 42.
    Tuczek F (2009) Electronic structure calculations: Dinitrogen reduction in nitrogenase and synthetic model systems. In: Solomon, EI, Scott, RA, King, RB (eds) Computational Inorganic and Bioinorganic Chemistry, pp. 287–307. Wiley, New York, NYGoogle Scholar
  43. 43.
    Hinnemann B, Nørskov JK (2004) Chemical activity of the nitrogenase FeMo cofactor with a central nitrogen ligand: Density functional study. J Am Chem Soc 126:3920–3927PubMedCrossRefGoogle Scholar
  44. 44.
    Schimpl J, Petrilli HM, Blöchl PE (2003) Nitrogen binding to the FeMo-cofactor of nitrogenase. J Am Chem Soc 125:15772–15778PubMedCrossRefGoogle Scholar
  45. 45.
    Schrock RR (2008) Catalytic reduction of dinitrogen to ammonia by molybdenum: Theory versus experiment. Angew Chem Int Edn 47:5512–5522CrossRefGoogle Scholar
  46. 46.
    Kästner J, Blöchl PE (2007) Ammonia production at the FeMo cofactor of nitrogenase: Results from density functional theory. J Am Chem Soc 129:2998–3006PubMedCrossRefGoogle Scholar
  47. 47.
    Dance I (2007) The mechanistically significant coordination chemistry of dinitrogen at FeMo-co, the catalytic site of nitrogenase. J Am Chem Soc 129:1076–1088PubMedCrossRefGoogle Scholar
  48. 48.
    Dance I (2008) The chemical mechanism of nitrogenase: Calculated details of the intramolecular mechanism for hydrogenation of η2-N2 on FeMo-co to NH3. Dalton Trans:5977–5991Google Scholar
  49. 49.
    Huniar U, Ahlrichs R, Coucouvanis D (2004) Density functional theory calculations and exploration of a possible mechanism of N2 reduction by nitrogenase. J Am Chem Soc 126:2588–2601PubMedCrossRefGoogle Scholar
  50. 50.
    Zhao Y, Truhlar DG (2008) Exploring the limit of accuracy of the global hybrid meta density functional for main-group thermochemistry, kinetics, and noncovalent interactions. J Chem Theor Comput 4:1849–1868CrossRefGoogle Scholar
  51. 51.
    Perdew JP, Tao JM, Staroverov VN et al (2004) Meta-generalized gradient approximation: Explanation of a realistic nonempirical density functional. J Chem Phys 120:6898–6911PubMedCrossRefGoogle Scholar
  52. 52.
    Jensen KP (2008) Bioinorganic chemistry modeled with the TPSSh density functional. Inorg Chem 47:10357–10365PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Molecular BiologyThe Scripps Research InstituteLa JollaUSA

Personalised recommendations