Advertisement

Mössbauer Spectroscopy

  • Boi Hanh HuynhEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 766)

Abstract

Mössbauer spectroscopy has contributed significantly to the studies of Fe-containing proteins. Early applications yielded detailed electronic characterizations of hemeproteins, and thus enhanced our understanding of the chemical properties of this important class of proteins. The next stage of the applications was marked by major discoveries of several novel Fe clusters of complex structures, including the 8Fe7S P cluster and the mixed metal 1Mo7Fe M center in nitrogenase. Since early 1990 s, rapid kinetic techniques have been used to arrest enzymatic reactions for Mössbauer studies. A number of reaction intermediates were discovered and characterized, both spectroscopically and kinetically, providing unprecedented detailed molecular-level mechanistic information. This chapter gives a brief summary of the historical accounts and a concise description of some experimental and theoretical elements in Mössbauer spectroscopy that are essential for understanding Mössbauer spectra. Major biological applications are summarized at the end.

Key words

Mössbauer spectroscopy electronic information nitrogenase cofactors Fe–S proteins 

References

  1. 1.
    Mössbauer RL (1958) Kernresonanzfluoreszenz von gammastrahlung in Ir-191. Zeitschrift Für Physik 151:124–143CrossRefGoogle Scholar
  2. 2.
    Schunemann V, Winkler H (2000) Structure and dynamics of biomolecules studied by Mössbauer spectroscopy. Rep Prog Phys 63:263–353CrossRefGoogle Scholar
  3. 3.
    Huynh BH, Kent TA (1984) Mössbauer studies of iron proteins. In: Eichhorn GL, Marzilli LG (eds) Advances in Inorganic Biochemistry, vol. 6, pp. 164–223. Elsevier, AmsterdamGoogle Scholar
  4. 4.
    Lang G, Marshall W (1966) Mössbauer effect in some haemoglobin compounds. Proc Phys Soc London 87:3–34CrossRefGoogle Scholar
  5. 5.
    Debrunner PG (1983) Mössbauer spectroscopy of iron porphyrins. In: Lever ABP, Gray HB (eds) Iron Porphyrins, Part III, pp. 137–234. VCH Publishers, New York, NYGoogle Scholar
  6. 6.
    Sands RH, Dunham WR (1974) Spectroscopic studies on 2-iron ferredoxins. Quart Rev Biophys 7:443–504CrossRefGoogle Scholar
  7. 7.
    Trautwein AX, Bill E, Bominaar EL et al (1991) Iron-containing proteins and related analogs – complementary Mössbauer, EPR and magnetic-susceptibility studies. Struct Bond 78:1–95Google Scholar
  8. 8.
    Münck E, Rhodes H, Orme-Johnson WH et al (1975) Nitrogenase .8. Mössbauer and EPR spectroscopy – MoFe protein component from Azotobacter-vinelandii OP. Biochim Biophys Acta 400:32–53PubMedGoogle Scholar
  9. 9.
    Rawlings J, Shah VK, Chisnell JR et al (1978) Novel metal cluster in iron-molybdenum cofactor of nitrogenase – spectroscopic evidence. J Biol Chem 253:1001–1004PubMedGoogle Scholar
  10. 10.
    Zimmermann R, Orme-Johnson WH, Münck E et al (1978) Nitrogenase-X – Mössbauer and EPR studies on reversibly oxidized MoFe protein from Azotobacter-vinelandii OP – Nature of iron centers. Biochim Biophys Acta 537:185–207PubMedGoogle Scholar
  11. 11.
    Emptage MH, Kent TA, Huynh BH et al (1980) Nature of the iron-sulfur centers in a ferredoxin from Azotobacter vinelandii – Mössbauer studies and cluster displacement experiments. J Biol Chem 255:1793–1796PubMedGoogle Scholar
  12. 12.
    Huynh BH, Moura JJG, Moura I et al (1980) Evidence for a three iron center in a ferredoxin from Desulfovibrio gigas. J Biol Chem 255:3242–3244PubMedGoogle Scholar
  13. 13.
    Kent TA, Dreyer JL, Kennedy MC et al (1982) Mössbauer studies of beef-heart aconitase – Evidence for facile interconversions of iron-sulfur clusters. Proc Natl Acad Sci USA 79:1096–1100PubMedCrossRefGoogle Scholar
  14. 14.
    Moura JJG, Moura I, Kent TA et al (1982) Interconversions of [3Fe-3S] and [4Fe-4S] clusters – Mössbauer and electron paramagnetic resonance studies of Desulfovibrio gigas ferredoxin II. J Biol Chem 257:6259–6267PubMedGoogle Scholar
  15. 15.
    Christner JA, Münck E, Janick PA et al (1981) Mössbauer spectroscopic studies of Escherichia coli sulfite reductase – evidence for coupling between the siroheme and Fe4S4 cluster prosthetic groups. J Biol Chem 256:2098–2101PubMedGoogle Scholar
  16. 16.
    Huynh BH, Kang L, Dervartanian DV et al (1984) Characterization of a sulfite reductase from Desulfovibrio vulgaris – Evidence for the presence of a low-spin siroheme and an exchange-coupled siroheme-[4Fe-4S] unit. J Biol Chem 259:5373–5376Google Scholar
  17. 17.
    Noodleman L, Case DA (1992) Density-functional theory of spin polarization and spin coupling in iron-sulfur clusters. Adv Inorg Chem 38:423–487CrossRefGoogle Scholar
  18. 18.
    Blondin G, Bominaar EL, Girerd JJ et al (1995) Spin dependent electron delocalization, vibronic and antiferromagnetic couplings in iron sulfur clusters. In: LaMar GN (ed) Nuclear Magnetic Resonance of Paramagnetic Macromolecules, vol. 457, pp. 369–386. Kluwer, DordrechtGoogle Scholar
  19. 19.
    Krebs C, Edmondson DE, Huynh BH (2002) Demonstration of peroxodiferric intermediate in M-ferritin ferroxidase reaction using rapid freeze-quench Mössbauer, resonance Raman, and XAS spectroscopies. Methods Enzymol 354:436–454PubMedCrossRefGoogle Scholar
  20. 20.
    Bollinger JM, Edmondson DE, Huynh BH et al (1991) Mechanism of assembly of the tyrosyl radical dinuclear iron cluster cofactor of ribonucleotide reductase. Science 253:292–298PubMedCrossRefGoogle Scholar
  21. 21.
    Bollinger JM, Tong WH, Ravi N et al (1994) Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of Escherichia coli ribonucleotide reductase. 2. Kinetics of the excess Fe2+ reaction by optical, EPR and Mössbauer spectroscopies. J Am Chem Soc 116:8015–8023CrossRefGoogle Scholar
  22. 22.
    Ravi N, Bollinger JM, Huynh BH et al (1994) Mechanism of assembly of the tyrosyl radical-diiron(III) cofactor of Escherichia coli ribonucleotide reductase. 1. Mössbauer characterization of the diferric radical precursor. J Am Chem Soc 116:8007–8014CrossRefGoogle Scholar
  23. 23.
    Liu KE, Valentine AM, Wang DL et al (1995) Kinetic and spectroscopic characterization of intermediates and component interactions of methane monooxygenase from Methylococcus capsulatus (Bath). J Am Chem Soc 117:10174–10185CrossRefGoogle Scholar
  24. 24.
    Pereira AS, Small W, Krebs C et al (1998) Direct spectroscopic and kinetic evidence for the involvement of a peroxodiferric intermediate during the ferroxidase reaction in fast ferritin mineralization. Biochemistry 37:9871–9876PubMedCrossRefGoogle Scholar
  25. 25.
    Price JC, Barr EW, Glass TE et al (2003) Evidence for hydrogen abstraction from C1 of taurine by the high-spin Fe(IV) intermediate detected during oxygen activation by taurine: alpha-ketoglutarate dioxygenase (TauD). J Am Chem Soc 125:13008–13009PubMedCrossRefGoogle Scholar
  26. 26.
    Price JC, Barr EW, Tirupati B et al (2003) The first direct characterization of a high-valent iron intermediate in the reaction of an alpha-ketoglutarate-dependent dioxygenase: A high-spin Fe(IV) complex in taurine/alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli. Biochemistry 42:7497–7508PubMedCrossRefGoogle Scholar
  27. 27.
    Xing G, Diao YH, Hoffart LM et al (2006) Evidence for C-H cleavage by an iron-superoxide complex in the glycol cleavage reaction catalyzed by myo-inositol oxygenase. Proc Natl Acad Sci USA 103:6130–6135PubMedCrossRefGoogle Scholar
  28. 28.
    Murray LJ, Naik SG, Ortillo DO et al (2007) Characterization of the arene-oxidizing intermediate in ToMOH as a diiron(III) species. J Am Chem Soc 129:14500–14510PubMedCrossRefGoogle Scholar
  29. 29.
    Jiang W, Yun D, Saleh L et al (2007) A manganese(IV)/iron(III) cofactor in Chlamydia trachomatis ribonucleotide reductase. Science 316:1188–1191PubMedCrossRefGoogle Scholar
  30. 30.
    Bollinger JM, Stubbe J, Huynh BH et al (1991) Novel diferric radical intermediate responsible for tyrosyl radical formation in assembly of the cofactor of ribonucleotide reductase. J Am Chem Soc 113:6289–6291CrossRefGoogle Scholar
  31. 31.
    Murray LJ, Garcia-Serres R, Naik S et al (2006) Dioxygen activation at non-heme diiron centers: Characterization of intermediates in a mutant form of toluene/o-xylene monooxygenase hydroxylase. J Am Chem Soc 128:7458–7459PubMedCrossRefGoogle Scholar
  32. 32.
    Hwang J, Krebs C, Huynh BH et al (2000) A short Fe-Fe distance in peroxodiferric ferritin: Control of Fe substrate versus cofactor decay? Science 287:122–125PubMedCrossRefGoogle Scholar
  33. 33.
    Moenne-Loccoz P, Krebs C, Herlihy K et al (1999) The ferroxidase reaction of ferritin reveals a diferric mu-1,2 bridging peroxide intermediate in common with other O2-activating non-heme diiron proteins. Biochemistry 38:5290–5295PubMedCrossRefGoogle Scholar
  34. 34.
    Liu KE, Wang DL, Huynh BH et al (1994) Spectroscopic detection of intermediates in the reaction of dioxygen with the reduced methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath). J Am Chem Soc 116:7465–7466CrossRefGoogle Scholar
  35. 35.
    Lee SK, Fox BG, Froland WA et al (1993) A transient intermediate of the Methane monooxygenase catalytic cycle containing an Fe(IV)Fe(IV) cluster. J Am Chem Soc 115:6450–6451CrossRefGoogle Scholar
  36. 36.
    Baldwin J, Voegtli WC, Khidekel N et al (2001) Rational reprogramming of the R2 subunit of Escherichia coli ribonucleotide reductase into a self-hydroxylating monooxygenase. J Am Chem Soc 123:7017–7030PubMedCrossRefGoogle Scholar
  37. 37.
    Bollinger JM, Krebs C, Vicol A et al (1998) Engineering the diiron site of Escherichia coli ribonucleotide reductase protein R2 to accumulate an intermediate similar to H-peroxo, the putative peroxodiiron(III) complex from the methane monooxygenase catalytic cycle. J Am Chem Soc 120:1094–1095CrossRefGoogle Scholar
  38. 38.
    Smith BE, Lang G (1974) Mössbauer spectroscopy of nitrogenase proteins from Klebsiella pneumoniae – Structural assignments and mechanistic conclusions. Biochem J 137:169–180PubMedGoogle Scholar
  39. 39.
    Huynh BH, Münck E, Orme-Johnson WH (1979) Nitrogenase-XI – Mössbauer studies of the cofactor centers of the MoFe protein from Azotobacter vinelandii-OP. Biochim Biophys Acta 576:192–203PubMedGoogle Scholar
  40. 40.
    Huynh BH, Henzl MT, Christner JA et al (1980) Nitrogenase.12. Mössbauer studies of the MoFe protein from Clostridium pasteurianum W5. Biochim Biophys Acta 623:124–138PubMedGoogle Scholar
  41. 41.
    Chan MK, Kim JS, Rees DC (1993) The nitrogenase FeMo cofactor and P cluster pair – 2.2-angstrom resolution structures. Science 260:792–794PubMedCrossRefGoogle Scholar
  42. 42.
    Peters JW, Stowell MHB, Soltis SM et al (1997) Redox-dependent structural changes in the nitrogenase P-cluster. Biochemistry 36:1181–1187PubMedCrossRefGoogle Scholar
  43. 43.
    Einsle O, Tezcan FA, Andrade SLA et al (2002) Nitrogenase MoFe-protein at 1.16 angstrom resolution: A central ligand in the FeMo-cofactor. Science 297:1696–1700PubMedCrossRefGoogle Scholar
  44. 44.
    Shah VK, Brill WJ (1977) Isolation of an iron-molybdenum cofactor from nitrogenase. Proc Natl Acad Sci USA 74:3249–3253PubMedCrossRefGoogle Scholar
  45. 45.
    Yoo SJ, Angove HC, Papaefthymiou V et al (2000) Mössbauer study of the MoFe protein of nitrogenase from Azotobacter vinelandii using selective Fe-57 enrichment of the M-centers. J Am Chem Soc 122:4926–4936CrossRefGoogle Scholar
  46. 46.
    Lindahl PA, Papaefthymiou V, Orme-Johnson WH et al (1988) Mössbauer studies of solid thionine-oxidized MoFe protein of nitrogenase. J Biol Chem 263:19412–19418PubMedGoogle Scholar
  47. 47.
    Surerus KK, Hendrich MP, Christie PD et al (1992) Mössbauer and integer-spin EPR of the oxidized P-cluster of nitrogenase – POX is a non-Kramers system with a nearly degenerate ground doublet. J Am Chem Soc 114:8579–8590CrossRefGoogle Scholar
  48. 48.
    Emptage MH, Zimmermann R, Que L et al (1977) Mössbauer studies of cytochrome C ’ from Rhodospirillum rubrum. Biochim Biophys Acta 495:12–23PubMedGoogle Scholar
  49. 49.
    Huynh BH, Patil DS, Moura I et al (1987) On the active sites of the [NiFe] hydrogenase from Desulfovibrio gigas – Mössbauer and redox titration studies. J Biol Chem 262:795–800PubMedGoogle Scholar
  50. 50.
    Krebs C, Broderick WE, Henshaw TF et al (2002) Coordination of adenosylmethionine to a unique iron site of the [4Fe-4S] of pyruvate formate-lyase activating enzyme: A Mössbauer spectroscopic study. J Am Chem Soc 124:912–913PubMedCrossRefGoogle Scholar
  51. 51.
    Krebs C, Price JC, Baldwin J et al (2005) Rapid freeze-quench Fe-57 Mössbauer spectroscopy: Monitoring changes of an iron-containing active site during a biochemical reaction. Inorg Chem 44:742–757PubMedCrossRefGoogle Scholar
  52. 52.
    Garcia-Serres R, Davydov RM, Matsui T et al (2007) Distinct reaction pathways followed upon reduction of oxy-heme oxygenase and oxy-myoglobin as characterized by Mössbauer spectroscopy. J Am Chem Soc 129:6662–6662Google Scholar
  53. 53.
    Krebs C, Chen SX, Baldwin J et al (2000) Mechanism of rapid electron transfer during oxygen activation in the R2 subunit of Escherichia coli ribonucleotide reductase. 2. Evidence for and consequences of blocked electron transfer in the W48F variant. J Am Chem Soc 122:12207–12219CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsEmory UniversityAtlantaUSA

Personalised recommendations