X-Ray Absorption Spectroscopy

  • Serena DeBeerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 766)


X-ray absorption spectroscopy (XAS) involves the excitation of core electrons to bound states localized on the photoabsorber and the eventual excitation of the photoelectron to the continuum. The resulting spectra are typically divided into two regions: (1) the edge region which provides electronic structure information and (2) the extended X-ray absorption fine structure (EXAFS) region, which provides information about the distance, number, and type of ligands. Here, a basic introduction to XAS theory, the information that can be obtained, and the experimental consideration are presented. The application of XAS to biological systems and the impact this has had on nitrogenase research are briefly highlighted. New experimental advances are described.

Key words

XAS EXAFS nitrogenase geometric structure electronic structure 



We thank Martha A. Beckwith for helpful comments on this chapter and Cornell University for generous financial support.


  1. 1.
    Shu LJ, Nesheim JC, Kauffmann K et al (1997) An (Fe2O2) diamond core structure for the key intermediate Q of methane monooxygenase. Science 275:515–518PubMedCrossRefGoogle Scholar
  2. 2.
    Burdi D, Willems JP, Riggs-Gelasco P et al (1998) The core structure of X generated in the assembly of the diiron cluster of ribonucleotide reductase: O-17(2) and (H2O)-O-17 ENDOR. J Am Chem Soc 120:12910–12919CrossRefGoogle Scholar
  3. 3.
    Stone KL, Behan RK, Green MT (2005) X-ray absorption spectroscopy of chloroperoxidase compound I: Insight into the reactive intermediate of P450 chemistry. Proc Natl Acad Sci USA 102:16563–16565PubMedCrossRefGoogle Scholar
  4. 4.
    Lee SK, DeBeer George S, Antholine WE et al (2002) Nature of the intermediate formed in the reduction of O2 to H2O at the trinuclear copper cluster active site in native laccase. J Am Chem Soc 124:6180–6193PubMedCrossRefGoogle Scholar
  5. 5.
    Yano J, Kern J, Sauer K et al (2006) Where water is oxidized to dioxygen: Structure of the photosynthetic Mn4Ca cluster. Science 314:821–825PubMedCrossRefGoogle Scholar
  6. 6.
    Yano J, Kern J, Irrgang KD et al (2005) X-ray damage to the Mn4Ca complex in single crystals of photosystem II: A case study for metalloprotein crystallography. Proc Natl Acad Sci USA 102:12047–12052PubMedCrossRefGoogle Scholar
  7. 7.
    Wolff TE, Berg JM, Warrick C et al (1978) Molybdenum-iron-sulfur cluster complex [Mo2Fe6S9(SC2H5)8]3- - Synthetic approach to molybdenum site in nitrogenase. J Am Chem Soc 100:4629–4632CrossRefGoogle Scholar
  8. 8.
    Koningsberger DC, Prins R (1988) X-Ray Absorption, Principles, Applications Techniques of EXAFS, SEXAFS, and XANES. Wiley, New York, NYGoogle Scholar
  9. 9.
    Scott RA (2000) X-ray absorption spectroscopy. In: Que L Jr (ed) Physical Methods in Bioinorganic Chemistry, pp. 465–503. University Science Books, Sausalito, CAGoogle Scholar
  10. 10.
    DeBeer George S, Neese F (2010) Calibration of scalar relativistic density functional theory for the calculation of sulfur K-edge X-ray absorption spectra. Inorg Chem 49:1849–1853PubMedCrossRefGoogle Scholar
  11. 11.
    DeBeer George S, Petrenko T, Neese F (2008) Prediction of iron K-edge absorption spectra using time-dependent density functional theory. J Phys Chem A 112:12936–12943PubMedCrossRefGoogle Scholar
  12. 12.
    Ankudinov AL, Ravel B, Rehr JJ et al (1998) Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure. Phys Rev B 58:7565–7576CrossRefGoogle Scholar
  13. 13.
    Ankudinov A, Conradson S, Rehr JJ (1997) Self-consistent calculations of XANES in Pu hydrates. Abstr Pap Am Chem S 214:52-GEOCGoogle Scholar
  14. 14.
    Filipponi A, Dicicco A, Tyson TA et al (1991) Ab initio modeling of X-ray absorption-spectra. Solid State Commun 78:265–268CrossRefGoogle Scholar
  15. 15.
    Cramer SP, Hodgson KO, Gillum WO et al (1978) Molybdenum site of nitrogenase – preliminary structural evidence from x-ray absorption spectroscopy. J Am Chem Soc 100:3398–3407CrossRefGoogle Scholar
  16. 16.
    Musgrave KB, Angove HC, Burgess BK et al (1998) All-ferrous titanium(III) citrate reduced Fe protein of nitrogenase: An XAS study of electronic and metrical structure. J Am Chem Soc 120:5325–5326CrossRefGoogle Scholar
  17. 17.
    Corbett MC, Hu YL, Fay AW et al (2006) Structural insights into a protein-bound iron-molybdenum cofactor precursor. Proc Natl Acad Sci USA 103:1238–1243PubMedCrossRefGoogle Scholar
  18. 18.
    George SJ, Igarashi RY, Xiao Y et al (2008) Extended X-ray absorption fine structure and nuclear resonance vibrational spectroscopy reveal that NifB-co, a FeMo-co precursor, comprises a 6Fe core with an interstitial light atom. J Am Chem Soc 130:5673–5680PubMedCrossRefGoogle Scholar
  19. 19.
    Einsle O, Tezcan FA, Andrade SLA et al (2002) Nitrogenase MoFe-protein at 1.16 angstrom resolution: A central ligand in the FeMo-cofactor. Science 297:1696–1700PubMedCrossRefGoogle Scholar
  20. 20.
    Glatzel P, Bergmann U (2005) High resolution 1਀s core hole X-ray spectroscopy in 3d transition metal complexes – electronic and structural information. Coord Chem Rev 249:65–95CrossRefGoogle Scholar
  21. 21.
    Einsle O, Andrade SLA, Dobbek H et al (2007) Assignment of individual metal redox states in a metalloprotein by crystallographic refinement at multiple X-ray wavelengths. J Am Chem Soc 129:2210PubMedCrossRefGoogle Scholar
  22. 22.
    Corbett MC, Latimer MJ, Poulos TL et al (2007) Photoreduction of the active site of the metalloprotein putidaredoxin by synchrotron radiation. Acta Crystallogr D 63:951–960PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical BiologyCornell UniversityIthacaUSA

Personalised recommendations