An In Vitro System to Study Sertoli Cell Blood-Testis Barrier Dynamics

Part of the Methods in Molecular Biology book series (MIMB, volume 763)


The use of an in vitro system based on primary cultures of Sertoli cells isolated from rat testes has greatly facilitated the study of the blood-testis barrier in recent years. Herein, we summarize the detailed procedures on the isolation of undifferentiated Sertoli cells from 20-day-old rat testes, the culture of these cells as a monolayer on Matrigel-coated bicameral units, the characterization of these cultured cells, and the use of the Sertoli cell epithelium for monitoring the integrity of the Sertoli cell blood-testis barrier. This information is based on the routine use of this system in our laboratory to study the Sertoli cell blood-testis barrier in the past two decades, which should be helpful for investigators in the field.

Key words

Testis Sertoli cell Blood-testis barrier Tight junction Ectoplasmic specialization Anchoring junction Spermatogenesis 


  1. 1.
    Setchell B.P., Waites G.M.B. The blood-testis barrier. In: Hamilton D.W., Greep R.O. (eds.), The Handbook of Physiology. Section 7, Vol. V. Male Reproductive System. Washington, D.C.: American Physiological Society; 1975: 143–172.Google Scholar
  2. 2.
    Setchell B.P. (2008) Blood-testis barrier, junctional and transport proteins and spermatogenesis. In: Molecular Mechanisms in Spermatogenesis. Ed. Cheng C.Y., Austin, T.X., Landes Bioscience/Springer Science  +  Business Media, LLC, pp. 212–233.Google Scholar
  3. 3.
    Wong C.H., Cheng C.Y. (2005) The blood-testis barrier: Its biology, regulation and physiological role in spermatogenesis. Curr Topics Dev Biol 71: 263–296.CrossRefGoogle Scholar
  4. 4.
    Cheng C.Y., Mruk D.D. (2002) Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol Rev 82: 825–874.PubMedGoogle Scholar
  5. 5.
    Mruk D.D., Silvestrini B., Cheng C.Y. (2008) Anchoring junctions as drug targets: Role in contraceptive development. Pharmacol Rev 60: 146–180.PubMedCrossRefGoogle Scholar
  6. 6.
    Russell L.D., Peterson R.N. (1985) Sertoli cell junctions: morphological and functional correlates. Int Rev Cytol 94: 177–211.PubMedCrossRefGoogle Scholar
  7. 7.
    Yan H.H.N., Mruk D.D., Cheng C.Y. (2008) Junction restructuring and spermatogenesis: The biology, regulation, and implication in male contraceptive development. Curr Top Dev Biol 80: 57–92.PubMedCrossRefGoogle Scholar
  8. 8.
    Yan H.H.N., Mruk D.D., Lee W.M., Cheng C.Y. (2007) Ectoplasmic specialization: a friend or a foe of spermatogenesis? BioEssays 29: 36–48.PubMedCrossRefGoogle Scholar
  9. 9.
    Byers S., Hadley M.A., Djakiew D., Dym M. (1986) Growth and characterization of epididymal epithelial cells and Sertoli cells in dual environment culture chambers. J Androl 7: 59–68.PubMedGoogle Scholar
  10. 10.
    Janecki A., Steinberger A. (1986) Polarized Sertoli cell functions in a new two-compartment culture system. J Androl 7: 69–71.PubMedGoogle Scholar
  11. 11.
    Janecki A., Jakubowiak A., Steinberger A. (1991) Regulation of transepithelial electrical resistance in two-compartment Sertoli cell cultures: in vitro model of the blood-testis barrier. Endocrinology 129: 1489–1496.PubMedCrossRefGoogle Scholar
  12. 12.
    Janecki A., Jakubowiak A., Steinberger A. (1991) Effects of cyclic AMP and phorbol ester on transepithelial electrical resistance of Sertoli cell monolayers in two-compartment culture. Mol Cell Endocrinol 82: 61–69.PubMedCrossRefGoogle Scholar
  13. 13.
    Okanlawon A., Dym M. (1996) Effect of chloroquine on the formation of tight junctions in cultured immature rat Sertoli cells. J Androl 17: 249–255.PubMedGoogle Scholar
  14. 14.
    Grima J., Pineau C., Bardin C.W., Cheng C.Y. (1992) Rat Sertoli cell clusterin, α2-macroglobulin, and testins: biosynthesis and differential regulation by germ cells. Mol Cell Endocrinol 89: 127–140.PubMedCrossRefGoogle Scholar
  15. 15.
    Siu M.K.Y., Wong C.H., Lee W.M., Cheng C.Y. (2005) Sertoli-germ cell anchoring junction dynamics in the testis are regulated by an interplay of lipid and protein kinases. J Biol Chem 280: 25029–25047.PubMedCrossRefGoogle Scholar
  16. 16.
    Byers S., Pelletier R.M., Suarez-Quain C. Sertoli cell junctions and the seminiferous epithelium barrier. In: Russell L.D., Griswold M.D. (eds.), The Sertoli Cell. Clearwater: Cache River Press; 1993: 431–446.Google Scholar
  17. 17.
    Setchell B.P., Waites G.M.H. (1970) Changes in the permeability of the testicular capillaries and of the “blood-testis barrier” after injection of cadmium chloride in the rat. J Endocrinol 47: 81–86.PubMedCrossRefGoogle Scholar
  18. 18.
    Wong C.H., Mruk D.D., Siu M.K.Y., Cheng C.Y. (2005) Blood-testis barrier dynamics are regulated by α2-macroglobulin via the c-Jun N-terminal protein kinase pathway. Endocrinology 146: 1893–1908.PubMedCrossRefGoogle Scholar
  19. 19.
    Li M.W.M., Mruk D.D., Lee W.M., Cheng C.Y. (2009) Disruption of the blood-testis barrier integrity by bisphenol A in vitro: Is this a suitable model for studying blood-testis barrier dynamics? Int J Biochem Cell Biol 41: 2302–2314.PubMedCrossRefGoogle Scholar
  20. 20.
    Li M.W.M., Xia W., Mruk D.D., Wang C.Q.F., Yan H.H.Y., Siu M.K.Y., Lui W.Y., Lee W.M., Cheng C.Y. (2006) TNFα reversibly disrupts the blood-testis barrier and impairs Sertoli-germ cell adhesion in the seminiferous epithelium of adult rat testes. J Endocrinol 190: 313–329.PubMedCrossRefGoogle Scholar
  21. 21.
    Janecki A., Jakubowiak A., Steinberger A. (1992) Effect of cadmium chloride on transepithelial electrical resistance of Sertoli cell monolayers in two-compartment cultures – a new model for toxicological investigations of the “blood-testis” barrier in vitro. Toxicol Appl Pharmacol 112: 51–57.PubMedCrossRefGoogle Scholar
  22. 22.
    Chung N.P.Y., Cheng C.Y. (2001) Is cadmium chloride-induced inter-Sertoli tight junction permeability barrier disruption a suitable in vitro model to study the events of junction disassembly during spermatogenesis in the rat testis? Endocrinology 142: 1878–1888.PubMedCrossRefGoogle Scholar
  23. 23.
    Siu E.R., Mruk D.D., Porto C.S., Cheng C.Y. (2009) Cadmium-induced testicular injury. Toxicol Appl Pharmacol 238: 240–249.PubMedCrossRefGoogle Scholar
  24. 24.
    Siu E.R., Wong E.W.P., Mruk D.D., Porto C.S., Cheng C.Y. (2009) Focal adhesion kinase is a blood-testis barrier regulator. Proc Natl Acad Sci USA 106: 9298–9303.PubMedCrossRefGoogle Scholar
  25. 25.
    Siu E.R., Wong E.W.P., Mruk D.D., Sze K.L., Porto C.S., Cheng C.Y. (2009) An occludin-focal adhesion kinase protein complex at the blood-testis barrier: a study using the cadmium model. Endocrinology 150: 3336–3344.PubMedCrossRefGoogle Scholar
  26. 26.
    Li M.W.M., Mruk D.D., Lee W.M., Cheng C.Y. (2009) Connexin 43 and plakophilin-2 as a protein complex that regulates blood-testis barrier dynamics. Proc Natl Acad Sci USA 106: 10213–10218.PubMedCrossRefGoogle Scholar
  27. 27.
    Lie P.P.Y., Cheng C.Y., Mruk D.D. (2010) Crosstalk between desmoglein-2/desmocollin-2/Src kinase and coxsackie and adenovirus receptor/ZO-1 protein complexes, regulates blood-testis barrier dynamics. Int J Biochem Cell Biol 42: 975–986.PubMedCrossRefGoogle Scholar
  28. 28.
    Mather J.P. (1980) Establishment and characterization of two distinct mouse testicular epithelial cell lines. Biol Reprod 23: 243–252.PubMedCrossRefGoogle Scholar
  29. 29.
    Mather J.P., Sato G.H. (1979) The use of hormone-supplemented serum-free media in primary cultures. Exp Cell Res 124: 215–221.PubMedCrossRefGoogle Scholar
  30. 30.
    Cheng C.Y., Mather J.P., Byer A.L., Bardin C.W. (1986) Identification of hormonally responsive proteins in primary Sertoli cell culture medium by anion-exchange high performance liquid chromatography. Endocrinology 118: 480–488.PubMedCrossRefGoogle Scholar
  31. 31.
    Mruk D.D., Siu M.K.Y., Conway A.M., Lee N.P.Y., Lau A.S.N., Cheng C.Y. (2003) Role of tissue inhibitor of metalloproteases-1 in junction dynamics in the testis. J Androl 24: 510–523.PubMedGoogle Scholar
  32. 32.
    Galdieri M., Ziparo E., Palombi F., Russo M.A., Stefanini M. (1981) Pure Sertoli cell cultures: a new model for the study of somatic-germ cell interactions. J Androl 5: 249–259.Google Scholar
  33. 33.
    Lee N.P.Y., Mruk D.D., Lee W.M., Cheng C.Y. (2003) Is the cadherin/catenin complex a functional unit of cell-cell-actin-based adherens junctions (AJ) in the rat testis? Biol Reprod 68: 489–508.PubMedCrossRefGoogle Scholar
  34. 34.
    Lee N.P.Y., Mruk D.D., Conway A.M., Cheng C.Y. (2004) Zyxin, axin, and Wiskott-Aldrich syndrome protein are adaptors that link the cadherin/catenin protein complex to the cytoskeleton at adherens junctions in the seminiferous epithelium of the rat testis. J Androl 25: 200–215.PubMedGoogle Scholar
  35. 35.
    Orth J.M. (1982) Proliferation of Sertoli cells in fetal and postnatal rats: A quantitative autoradiographic study. Anat Rec 203: 485–492.PubMedCrossRefGoogle Scholar
  36. 36.
    Li J.C.H., Lee W.M., Mruk D.D., Cheng C.Y. (2001) Regulation of Sertoli cell myotubularin (rMTM) expression by germ cells in vitro. J Androl 22: 266–277.PubMedGoogle Scholar
  37. 37.
    Lui W.Y., Lee W.M., Cheng C.Y. (2003) Transforming growth factor-β3 regulates the dynamics of Sertoli cell tight junctions via the p38 mitogen-activated protein kinase pathway. Biol Reprod 68: 1597–1612.PubMedCrossRefGoogle Scholar
  38. 38.
    Wright W.W., Zabludoff S.D., Erickson-Lawrence M., Karzai A.W. (1989) Germ cell-Sertoli cell interactions. Studies of cyclic protein-2 in the seminiferous tubule. Ann N Y Acad Sci 564: 173–185.PubMedCrossRefGoogle Scholar
  39. 39.
    Wong E.W.P., Mruk D.D., Cheng C.Y. (2008) Biology and regulation of ectoplasmic specialization, an atypical adherens junction type, in the testis. Biochem Biophys Acta 1778: 692–708.PubMedCrossRefGoogle Scholar
  40. 40.
    Chung N.P.Y., Mruk D.D., Mo M.Y., Lee W.M., Cheng C.Y. (2001) A 22-amino acid synthetic peptide corresponding to the second extracellular loop of rat occludin perturbs the blood-testis barrier and disrupts spermatogenesis reversibly in vivo. Biol Reprod 65: 1340–1351.PubMedCrossRefGoogle Scholar
  41. 41.
    Wong C.C.S., Chung S.S.W., Grima J., Zhu L.J., Mruk D.D., Lee W.M., Cheng C.Y. (2000) Changes in the expression of junctional and nonjunctional complex component genes when inter-Sertoli tight junctions are formed in vitro. J Androl 21: 227–237.PubMedGoogle Scholar
  42. 42.
    Mruk D.D., Zhu L.J., Silvestrini B., Lee W.M., Cheng C.Y. (1997) Interactions of proteases and protease inhibitors in Sertoli-germ cell cocultures preceding the formation of specialized Sertoli-germ cell junctions in vitro. J Androl 18: 612–622.PubMedGoogle Scholar
  43. 43.
    Lee N.P.Y., Cheng C.Y. (2003) Regulation of Sertoli cell tight junction dynamics in the rat testis via the nitric oxide synthase/soluble guanylate cyclase/3′,5′-cyclic guanosine monophosphate/protein kinase G signaling pathway: an in vitro study. Endocrinology 144: 3114–3129.PubMedCrossRefGoogle Scholar
  44. 44.
    Lie P.P.Y., Chan A.Y.N., Mruk D.D., Lee W.M., Cheng C.Y. (2010) Restricted Arp3 expression in the testis prevents blood-testis barrier disruption during junction restructuring at spermatogenesis. Proc Natl Acad Sci USA 107: 11411–11416.Google Scholar
  45. 45.
    Wong E.W.P., Mruk D.D., Lee W.M., Cheng C.Y. (2010) Regulation of blood-testis barrier dynamics by TGF-β3 is a Cdc42-dependent protein trafficking event. Proc Natl Acad Sci USA 107: 11399–11404.Google Scholar
  46. 46.
    Wong E.W.P., Sun S., Li M.W.M., Lee W.M., Cheng C.Y. (2009) 14-3-3 protein regulates cell adhesion in the seminiferous epithelium of rat testes. Endocrinology 150: 4713–4723.PubMedCrossRefGoogle Scholar
  47. 47.
    Lui W.Y., Lee W.M., Cheng C.Y. (2001) Transforming growth factor-β3 perturbs the inter-Sertoli tight junction permeability barrier in vitro possibly mediated via its effects on occludin, zonula occludens-1, and claudin-11. Endocrinology 142: 1865–1877.PubMedCrossRefGoogle Scholar
  48. 48.
    Lui W.Y., Wong C.H., Mruk D.D., Cheng C.Y. (2003) TGF-β3 regulates the blood-testis barrier dynamics via the p38 mitogen activated protein (MAP) kinase pathway: an in vivo study. Endocrinology 144: 1139–1142.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Center for Biomedical Research, Population CouncilNew YorkUSA

Personalised recommendations