Skip to main content

Claudin Family Proteins in Caenorhabditis elegans

  • Protocol
  • First Online:
Claudins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 762))

Abstract

In the last decade, the claudin family of integral membrane proteins has been identified as the major protein component of the tight junctions in all vertebrates. The claudin superfamily proteins also function to regulate channel activity, intercellular signaling, and cell morphology. Subsequently, claudin homologues have been identified in invertebrates, including Drosophila and Caenorhabditis elegans. Recent studies demonstrate that the C. elegans claudins, clc-1 to clc-5, and similar proteins in the greater PMP22/EMP/claudin/calcium channel γ subunit family, including nsy-1-nsy-4 and vab-9, while highly divergent at a sequence level from each other and from the vertebrate claudins, in some cases play roles similar to those traditionally assigned to their vertebrate homologues. These include regulating cell adhesion and passage of small molecules through the paracellular space. The claudin superfamily proteins also function to regulate channel activity, intercellular signaling, and cell morphology. Study of claudin superfamily proteins in C. elegans should continue to provide clues as to how core claudin protein function can be modified to serve various specific roles at regions of cell–cell contact in metazoans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Furuse, M., et al., A single gene product, ­claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol, 1998. 143(2): p. 391–401.

    Article  PubMed  CAS  Google Scholar 

  2. Furuse, M., et al., Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol, 1998. 141(7): p. 1539–50.

    Article  PubMed  CAS  Google Scholar 

  3. Morita, K., et al., Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol, 1999. 147(1): p. 185–94.

    Article  PubMed  CAS  Google Scholar 

  4. Nitta, T., et al., Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol, 2003. 161(3): p. 653–60.

    Article  PubMed  CAS  Google Scholar 

  5. Gow, A., et al., Deafness in Claudin 11-null mice reveals the critical contribution of basal cell tight junctions to stria vascularis function. J Neurosci, 2004. 24(32): p. 7051–62.

    Article  PubMed  CAS  Google Scholar 

  6. Furuse, M., et al., Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol, 2002. 156(6): p. 1099–111.

    Article  PubMed  CAS  Google Scholar 

  7. Wilcox, E.R., et al., Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell, 2001. 104(1): p. 165–72.

    Article  PubMed  CAS  Google Scholar 

  8. Tatum, R., et al., Renal salt wasting and chronic dehydration in claudin-7-deficient mice. Am J Physiol Renal Physiol, 298(1): p. F24–34.

    Google Scholar 

  9. Kollmar, R., et al., Expression and phylogeny of claudins in vertebrate primordia. Proc Natl Acad Sci USA, 2001. 98(18): p. 10196–201.

    Article  PubMed  CAS  Google Scholar 

  10. Krause, G., et al., Structure and function of claudins. Biochim Biophys Acta, 2008. 1778(3): p. 631–45.

    Article  PubMed  CAS  Google Scholar 

  11. Morita, K., et al., Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands. Proc Natl Acad Sci USA, 1999. 96(2): p. 511–6.

    Article  PubMed  CAS  Google Scholar 

  12. Blasig, I.E., et al., On the self-association potential of transmembrane tight junction proteins. Cell Mol Life Sci, 2006. 63(4): p. 505–14.

    Article  PubMed  CAS  Google Scholar 

  13. Coyne, C.B., et al., Role of claudin interactions in airway tight junctional permeability. Am J Physiol Lung Cell Mol Physiol, 2003. 285(5): p. L1166–78.

    PubMed  CAS  Google Scholar 

  14. Mitic, L.L., V.M. Unger, and J.M. Anderson, Expression, solubilization, and biochemical characterization of the tight junction transmembrane protein claudin-4. Protein Sci, 2003. 12(2): p. 218–27.

    Article  PubMed  CAS  Google Scholar 

  15. Van Itallie, C.M. and J.M. Anderson, Claudins and epithelial paracellular transport. Annu Rev Physiol, 2006. 68: p. 403–29.

    Article  PubMed  CAS  Google Scholar 

  16. Kiuchi-Saishin, Y., et al., Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol, 2002. 13(4): p. 875–86.

    PubMed  CAS  Google Scholar 

  17. Simon, D.B., et al., Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science, 1999. 285(5424): p. 103–6.

    Article  PubMed  CAS  Google Scholar 

  18. Holmes, J.L., et al., Claudin profiling in the mouse during postnatal intestinal development and along the gastrointestinal tract reveals complex expression patterns. Gene Expr Patterns, 2006. 6(6): p. 581–8.

    Article  PubMed  CAS  Google Scholar 

  19. Colegio, O.R., et al., Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol Cell Physiol, 2002. 283(1): p. C142–7.

    PubMed  CAS  Google Scholar 

  20. Van Itallie, C.M., et al., Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. Am J Physiol Renal Physiol, 2006. 291(6): p. F1288–99.

    Article  PubMed  CAS  Google Scholar 

  21. Evans, M.J., et al., Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature, 2007. 446(7137): p. 801–5.

    Article  PubMed  CAS  Google Scholar 

  22. Meertens, L., et al., The tight junction proteins claudin-1, -6, and -9 are entry cofactors for hepatitis C virus. J Virol, 2008. 82(7): p. 3555–60.

    Article  PubMed  CAS  Google Scholar 

  23. Zheng, A., et al., Claudin-6 and claudin-9 function as additional coreceptors for hepatitis C virus. J Virol, 2007. 81(22): p. 12465–71.

    Article  PubMed  CAS  Google Scholar 

  24. Hamazaki, Y., et al., Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem, 2002. 277(1): p. 455–61.

    Article  PubMed  CAS  Google Scholar 

  25. Itoh, M., et al., Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of ­claudins. J Cell Biol, 1999. 147(6): p. 1351–63.

    Article  PubMed  CAS  Google Scholar 

  26. Muller, D., et al., Unusual clinical presentation and possible rescue of a novel claudin-16 mutation. J Clin Endocrinol Metab, 2006. 91(8): p. 3076–9.

    Article  PubMed  CAS  Google Scholar 

  27. D’Souza, T., R. Agarwal, and P.J. Morin, Phosphorylation of claudin-3 at threonine 192 by cAMP-dependent protein kinase regulates tight junction barrier function in ovarian cancer cells. J Biol Chem, 2005. 280(28): p. 26233–40.

    Article  PubMed  CAS  Google Scholar 

  28. Tanaka, M., R. Kamata, and R. Sakai, EphA2 phosphorylates the cytoplasmic tail of Claudin-4 and mediates paracellular permeability. J Biol Chem, 2005. 280(51): p. 42375–82.

    Article  PubMed  CAS  Google Scholar 

  29. Tatum, R., et al., WNK4 phosphorylates ser(206) of claudin-7 and promotes paracellular Cl(−) permeability. FEBS Lett, 2007. 581(20): p. 3887–91.

    Article  PubMed  CAS  Google Scholar 

  30. Lane, N.J. and H.I. Skaer, Intercellular junctions in insect tissues. Adv Insect Physiol, 1980. 15: p. 35–213.

    Google Scholar 

  31. Hua, V.B., et al., Sequence and phylogenetic analyses of 4 TMS junctional proteins of ­animals: connexins, innexins, claudins and occludins. J Membr Biol, 2003. 194(1): p. 59–76.

    Article  PubMed  CAS  Google Scholar 

  32. Wu, V.M., et al., Sinuous is a Drosophila claudin required for septate junction organization and epithelial tube size control. J Cell Biol, 2004. 164(2): p. 313–23.

    Article  PubMed  CAS  Google Scholar 

  33. Price, M.G., et al., The alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate receptor trafficking regulator “stargazin” is related to the claudin family of proteins by Its ability to mediate cell-cell adhesion. J Biol Chem, 2005. 280(20): p. 19711–20.

    Article  PubMed  CAS  Google Scholar 

  34. Ihrie, R.A., et al., Perp is a p63-regulated gene essential for epithelial integrity. Cell, 2005. 120(6): p. 843–56.

    Article  PubMed  CAS  Google Scholar 

  35. Attardi, L.D., et al., PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev, 2000. 14(6): p. 704–18.

    PubMed  CAS  Google Scholar 

  36. Bruggeman, L.A., S. Martinka, and J.S. Simske, Expression of TM4SF10, a Claudin/EMP/PMP22 family cell junction protein, during mouse kidney development and podocyte differentiation. Dev Dyn, 2007. 236(2): p. 596–605.

    Article  PubMed  CAS  Google Scholar 

  37. Lane, N.J., Tight junctions in invertebrates, in Tight Junctions, M.a.A. Cereijido, J., Editor. 2001, CRC Press: New York. p. 39–59.

    Google Scholar 

  38. Spiegel, E. and L. Howard, Development of cell junctions in sea-urchin embryos. J Cell Sci, 1983. 62: p. 27–48.

    PubMed  CAS  Google Scholar 

  39. Tepass, U. and V. Hartenstein, The development of cellular junctions in the Drosophila embryo. Dev Biol, 1994. 161(2): p. 563–96.

    Article  PubMed  CAS  Google Scholar 

  40. Noirot-Timothée, C. and C. Noirot, Septate and sclariform junctions in arthropods. Int Rev Cytol, 1980. 63: p. 97–141.

    Article  PubMed  Google Scholar 

  41. Gilula, N.B., D. Branton, and P. Satir, The septate junction: a structural basis for intercellular coupling. Proc Natl Acad Sci USA, 1970. 67(1): p. 213–20.

    Article  PubMed  CAS  Google Scholar 

  42. Satir, P. and N.B. Gilula, The fine structure of membranes and intercellular communication in insects. Annu Rev Entomol, 1973. 18: p. 143–66.

    Article  PubMed  CAS  Google Scholar 

  43. Davidson, L.A., A freeze fracture and thin section study of intestinal cell membranes and intercellular junctions of a nematode, Ascaris. Tissue Cell, 1983. 15(1): p. 27–37.

    Article  PubMed  CAS  Google Scholar 

  44. Lane, N.J. and L.S. Swales, Stages in the assembly of pleated and smooth septate junctions in developing insect embryos. J Cell Sci, 1982. 56: p. 245–62.

    PubMed  CAS  Google Scholar 

  45. Behr, M., D. Riedel, and R. Schuh, The ­claudin-like megatrachea is essential in septate junctions for the epithelial barrier ­function in Drosophila. Dev Cell, 2003. 5(4): p. 611–20.

    Article  PubMed  CAS  Google Scholar 

  46. Genova, J.L. and R.G. Fehon, Neuroglian, Gliotactin, and the Na+/K+ ATPase are essential for septate junction function in Drosophila. J Cell Biol, 2003. 161(5): p. 979–89.

    Article  PubMed  CAS  Google Scholar 

  47. Wu, V.M., et al., Drosophila Varicose, a member of a new subgroup of basolateral MAGUKs, is required for septate junctions and tracheal morphogenesis. Development, 2007. 134(5): p. 999–1009.

    Article  PubMed  CAS  Google Scholar 

  48. Suzuki, A. and S. Ohno, The PAR-aPKC system: lessons in polarity. J Cell Sci, 2006. 119(Pt 6): p. 979–87.

    Article  PubMed  CAS  Google Scholar 

  49. Fehon, R.G., I.A. Dawson, and S. Artavanis-Tsakonas, A Drosophila homologue of ­membrane-skeleton protein 4.1 is associated with septate junctions and is encoded by the coracle gene. Development, 1994. 120(3): p. 545–57.

    PubMed  CAS  Google Scholar 

  50. Baumgartner, S., et al., A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell, 1996. 87(6): p. 1059–68.

    Article  PubMed  CAS  Google Scholar 

  51. Woods, D.F., J.W. Wu, and P.J. Bryant, Localization of proteins to the apico-lateral junctions of Drosophila epithelia. Dev Genet, 1997. 20(2): p. 111–8.

    Article  PubMed  CAS  Google Scholar 

  52. Schulte, J., U. Tepass, and V.J. Auld, Gliotactin, a novel marker of tricellular junctions, is necessary for septate junction development in Drosophila. J Cell Biol, 2003. 161(5): p. 991–1000.

    Article  PubMed  CAS  Google Scholar 

  53. Banerjee, S. and M.A. Bhat, Neuron-glial interactions in blood-brain barrier formation. Annu Rev Neurosci, 2007. 30: p. 235–58.

    Article  PubMed  CAS  Google Scholar 

  54. Banerjee, S., et al., Axonal ensheathment and septate junction formation in the peripheral nervous system of Drosophila. J Neurosci, 2006. 26(12): p. 3319–29.

    Article  PubMed  CAS  Google Scholar 

  55. Bhat, M.A., et al., Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron, 2001. 30(2): p. 369–83.

    Article  PubMed  CAS  Google Scholar 

  56. Stork, T., et al., Organization and function of the blood-brain barrier in Drosophila. J Neurosci, 2008. 28(3): p. 587–97.

    Article  PubMed  CAS  Google Scholar 

  57. Bellen, H.J., et al., Neurexin IV, caspr and paranodin – novel members of the neurexin family: encounters of axons and glia. Trends Neurosci, 1998. 21(10): p. 444–9.

    Article  PubMed  CAS  Google Scholar 

  58. Schafer, D.P. and M.N. Rasband, Glial regulation of the axonal membrane at nodes of Ranvier. Curr Opin Neurobiol, 2006. 16(5): p. 508–14.

    Article  PubMed  CAS  Google Scholar 

  59. Blair, J.E., et al., The evolutionary position of nematodes. BMC Evol Biol, 2002. 2: p. 7.

    Article  PubMed  Google Scholar 

  60. Knust, E. and O. Bossinger, Composition and formation of intercellular junctions in epithelial cells. Science, 2002. 298(5600): p. 1955–9.

    Article  PubMed  CAS  Google Scholar 

  61. Costa, M., et al., A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J Cell Biol, 1998. 141(1): p. 297–308.

    Article  PubMed  CAS  Google Scholar 

  62. Pettitt, J., et al., The Caenorhabditis elegans p120 catenin homologue, JAC-1, modulates cadherin-catenin function during epidermal morphogenesis. J Cell Biol, 2003. 162(1): p. 15–22.

    Article  PubMed  CAS  Google Scholar 

  63. Bossinger, O., et al., Zonula adherens formation in Caenorhabditis elegans requires dlg-1, the homologue of the Drosophila gene discs large. Dev Biol, 2001. 230(1): p. 29–42.

    Article  PubMed  CAS  Google Scholar 

  64. Firestein, B.L. and C. Rongo, DLG-1 is a MAGUK similar to SAP97 and is required for adherens junction formation. Mol Biol Cell, 2001. 12(11): p. 3465–75.

    PubMed  CAS  Google Scholar 

  65. Koppen, M., et al., Cooperative regulation of AJM-1 controls junctional integrity in Caenorhabditis elegans epithelia. Nat Cell Biol, 2001. 3(11): p. 983–91.

    Article  PubMed  CAS  Google Scholar 

  66. McMahon, L., et al., Assembly of C. elegans apical junctions involves positioning and compaction by LET-413 and protein aggregation by the MAGUK protein DLG-1. J Cell Sci, 2001. 114(Pt 12): p. 2265–77.

    PubMed  CAS  Google Scholar 

  67. Simske, J.S., et al., The cell junction protein VAB-9 regulates adhesion and epidermal morphology in C. elegans. Nat Cell Biol, 2003. 5(7): p. 619–25.

    Article  PubMed  CAS  Google Scholar 

  68. Aono, S., et al., PAR-3 is required for epithelial cell polarity in the distal spermatheca of C. elegans. Development, 2004. 131(12): p. 2865–74.

    Article  PubMed  CAS  Google Scholar 

  69. Michaux, G., et al., CHE-14, a protein with a sterol-sensing domain, is required for apical sorting in C. elegans ectodermal epithelial cells. Curr Biol, 2000. 10(18): p. 1098–107.

    Article  PubMed  CAS  Google Scholar 

  70. Shibata, Y., et al., EAT-20, a novel transmembrane protein with EGF motifs, is required for efficient feeding in Caenorhabditis elegans. Genetics, 2000. 154(2): p. 635–46.

    PubMed  CAS  Google Scholar 

  71. Bilder, D. and N. Perrimon, Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature, 2000. 403(6770): p. 676–80.

    Article  PubMed  CAS  Google Scholar 

  72. Legouis, R., et al., LET-413 is a basolateral protein required for the assembly of adherens junctions in Caenorhabditis elegans. Nat Cell Biol, 2000. 2(7): p. 415–22.

    Article  PubMed  CAS  Google Scholar 

  73. Bossinger, O., et al., The apical disposition of the Caenorhabditis elegans intestinal terminal web is maintained by LET-413. Dev Biol, 2004. 268(2): p. 448–56.

    Article  PubMed  CAS  Google Scholar 

  74. McCarter, J., et al., Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages. Dev Biol, 1997. 181(2): p. 121–43.

    Article  PubMed  CAS  Google Scholar 

  75. Schedl, T., Developmental genetics of the germ line in C. elegans II, T.B. D. Riddle, B. Meyer and J. Priess, Editor. 1997, Cold Spring Harbor Laboratory Press: Cold Spring Harbor. p. 241–270.

    Google Scholar 

  76. Hall, D.H., et al., Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma. Dev Biol, 1999. 212(1): p. 101–23.

    Article  PubMed  CAS  Google Scholar 

  77. Hall, D.H., Altun, Z.F., Reproductive System, in C. elegans Atlas, C.S.H.L. Press, Editor. 2008: Cold Spring Harbor. p. 243–291.

    Google Scholar 

  78. Piekny, A.J., et al., The Caenorhabditis elegans nonmuscle myosin genes nmy-1 and nmy-2 function as redundant components of the let-502/Rho-binding kinase and mel-11/myosin phosphatase pathway during embryonic ­morphogenesis. Development, 2003. 130(23): p. 5695–704.

    Article  PubMed  CAS  Google Scholar 

  79. Piekny, A.J. and P.E. Mains, Rho-binding kinase (LET-502) and myosin phosphatase (MEL-11) regulate cytokinesis in the early Caenorhabditis elegans embryo. J Cell Sci, 2002. 115(Pt 11): p. 2271–82.

    PubMed  CAS  Google Scholar 

  80. Wissmann, A., J. Ingles, and P.E. Mains, The Caenorhabditis elegans mel-11 myosin phosphatase regulatory subunit affects tissue contraction in the somatic gonad and the embryonic epidermis and genetically interacts with the Rac signaling pathway. Dev Biol, 1999. 209(1): p. 111–27.

    Article  PubMed  CAS  Google Scholar 

  81. Asano, A., et al., Claudins in Caenorhabditis elegans: their distribution and barrier function in the epithelium. Curr Biol, 2003. 13(12): p. 1042–6.

    Article  PubMed  CAS  Google Scholar 

  82. Christophe-Hobertus, C., et al., TM4SF10 gene sequencing in XLMR patients identifies common polymorphisms but no disease-associated mutation. BMC Med Genet, 2004. 5: p. 22.

    Article  PubMed  CAS  Google Scholar 

  83. Christophe-Hobertus, C., et al., Identification of the gene encoding Brain Cell Membrane Protein 1 (BCMP1), a putative four-transmembrane protein distantly related to the Peripheral Myelin Protein 22/Epithelial Membrane Proteins and the Claudins. BMC Genomics, 2001. 2(1): p. 3.

    Article  PubMed  CAS  Google Scholar 

  84. Holzman, L.B., et al., Nephrin localizes to the slit pore of the glomerular epithelial cell. Kidney Int, 1999. 56(4): p. 1481–91.

    Article  PubMed  Google Scholar 

  85. Huber, T.B. and T. Benzing, The slit diaphragm: a signaling platform to regulate podocyte function. Curr Opin Nephrol Hypertens, 2005. 14(3): p. 211–6.

    Article  PubMed  Google Scholar 

  86. Barletta, G.M., et al., Nephrin and Neph1 co-localize at the podocyte foot process intercellular junction and form cis hetero-oligomers. J Biol Chem, 2003. 278(21): p. 19266–71.

    Article  PubMed  CAS  Google Scholar 

  87. Khoshnoodi, J., et al., Nephrin promotes cell-cell adhesion through homophilic interactions. Am J Pathol, 2003. 163(6): p. 2337–46.

    Article  PubMed  CAS  Google Scholar 

  88. Verma, R., et al., Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. J Clin Invest, 2006. 116(5): p. 1346–59.

    Article  PubMed  CAS  Google Scholar 

  89. Verma, R., et al., Fyn binds to and phosphorylates the kidney slit diaphragm component Nephrin. J Biol Chem, 2003. 278(23): p. 20716–23.

    Article  PubMed  CAS  Google Scholar 

  90. Garg, P., et al., Neph1 cooperates with nephrin to transduce a signal that induces actin polymerization. Mol Cell Biol, 2007. 27(24): p. 8698–712.

    Article  PubMed  CAS  Google Scholar 

  91. Lahdenpera, J., et al., Clustering-induced tyrosine phosphorylation of nephrin by Src ­family kinases. Kidney Int, 2003. 64(2): p. 404–13.

    Article  PubMed  CAS  Google Scholar 

  92. Li, H., et al., SRC-family kinase Fyn phosphorylates the cytoplasmic domain of nephrin and modulates its interaction with podocin. J Am Soc Nephrol, 2004. 15(12): p. 3006–15.

    Article  PubMed  Google Scholar 

  93. Liu, X.L., et al., Characterization of the interactions of the nephrin intracellular domain. FEBS J, 2005. 272(1): p. 228–43.

    Article  PubMed  CAS  Google Scholar 

  94. Harita, Y., et al., Neph1, a component of the kidney slit diaphragm, is tyrosine-phosphorylated by the Src family tyrosine kinase and modulates intracellular signaling by binding to Grb2. J Biol Chem, 2008. 283(14): p. 9177–86.

    Article  PubMed  CAS  Google Scholar 

  95. Zhu, J., et al., Nephrin mediates actin reorganization via phosphoinositide 3-kinase in podocytes. Kidney Int, 2008. 73(5): p. 556–66.

    Article  PubMed  CAS  Google Scholar 

  96. Laketa, V., et al., High-content microscopy identifies new neurite outgrowth regulators. Mol Biol Cell, 2007. 18(1): p. 242–52.

    Article  PubMed  CAS  Google Scholar 

  97. Shen, K., R.D. Fetter, and C.I. Bargmann, Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell, 2004. 116(6): p. 869–81.

    Article  PubMed  CAS  Google Scholar 

  98. Shen, K. and C.I. Bargmann, The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans. Cell, 2003. 112(5): p. 619–30.

    Article  PubMed  CAS  Google Scholar 

  99. Putzke, A.P., et al., Essential kinase-independent role of a Fer-like non-receptor tyrosine kinase in Caenorhabditis elegans morphogenesis. Development, 2005. 132(14): p. 3185–95.

    Article  PubMed  CAS  Google Scholar 

  100. Lockwood, C., R. Zaidel-Bar, and J. Hardin, The C. elegans zonula occludens ortholog cooperates with the cadherin complex to recruit actin during morphogenesis. Curr Biol, 2008. 18(17): p. 1333–7.

    Article  PubMed  CAS  Google Scholar 

  101. Van Itallie, C.M., et al., ZO-1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton. Mol Biol Cell, 2009. 20(17): p. 3930–40.

    Article  PubMed  CAS  Google Scholar 

  102. Vanhoven, M.K., et al., The claudin superfamily protein nsy-4 biases lateral signaling to generate left-right asymmetry in C. elegans olfactory neurons. Neuron, 2006. 51(3): p. 291–302.

    Article  PubMed  CAS  Google Scholar 

  103. Lesch, B.J., et al., Transcriptional regulation and stabilization of left-right neuronal ­identity in C. elegans. Genes Dev, 2009. 23(3): p. 345–58.

    Article  PubMed  CAS  Google Scholar 

  104. Sagasti, A., et al., The CaMKII UNC-43 activates the MAPKKK NSY-1 to execute a lateral signaling decision required for asymmetric olfactory neuron fates. Cell, 2001. 105(2): p. 221–32.

    Article  PubMed  CAS  Google Scholar 

  105. Tanaka-Hino, M., et al., SEK-1 MAPKK mediates Ca2+ signaling to determine ­neuronal asymmetric development in Caenorhabditis elegans. EMBO Rep, 2002. 3(1): p. 56–62.

    Article  PubMed  CAS  Google Scholar 

  106. Wes, P.D. and C.I. Bargmann, C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature, 2001. 410(6829): p. 698–701.

    Article  PubMed  CAS  Google Scholar 

  107. Chuang, C.F. and C.I. Bargmann, A Toll-interleukin 1 repeat protein at the synapse specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling. Genes Dev, 2005. 19(2): p. 270–81.

    Article  PubMed  CAS  Google Scholar 

  108. Chuang, C.F., et al., An innexin-dependent cell network establishes left-right neuronal asymmetry in C. elegans. Cell, 2007. 129(4): p. 787–99.

    Article  PubMed  CAS  Google Scholar 

  109. Wilkinson, H.A., K. Fitzgerald, and I. Greenwald, Reciprocal changes in expression of the receptor lin-12 and its ligand lag-2 prior to commitment in a C. elegans cell fate decision. Cell, 1994. 79(7): p. 1187–98.

    Article  PubMed  CAS  Google Scholar 

  110. Seydoux, G. and I. Greenwald, Cell autonomy of lin-12 function in a cell fate decision in C. elegans. Cell, 1989. 57(7): p. 1237–45.

    Article  PubMed  CAS  Google Scholar 

  111. Chen, N. and I. Greenwald, The lateral signal for LIN-12/Notch in C. elegans vulval development comprises redundant secreted and transmembrane DSL proteins. Dev Cell, 2004. 6(2): p. 183–92.

    Article  PubMed  CAS  Google Scholar 

  112. Henderson, S.T., et al., lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. Development, 1994. 120(10): p. 2913–24.

    PubMed  CAS  Google Scholar 

  113. Tax, F.E., J.J. Yeargers, and J.H. Thomas, Sequence of C. elegans lag-2 reveals a cell-signalling domain shared with Delta and Serrate of Drosophila. Nature, 1994. 368(6467): p. 150–4.

    Article  PubMed  CAS  Google Scholar 

  114. Lambie, E.J. and J. Kimble, Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. Development, 1991. 112(1): p. 231–40.

    PubMed  CAS  Google Scholar 

  115. Tamura, K., et al., MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 2007. 24(8): p. 1596–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank David Hall for sharing unpublished information and for the immunoelectron micrograph of the spermatheca shown in Fig. 5a. Drawings of the spermatheca in Fig. 5b, c are reprinted from Wormatlas with the permission of CSH press. This work was supported by NIH grant GM058038 to J.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Hardin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Simske, J.S., Hardin, J. (2011). Claudin Family Proteins in Caenorhabditis elegans . In: Turksen, K. (eds) Claudins. Methods in Molecular Biology, vol 762. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-185-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-185-7_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-184-0

  • Online ISBN: 978-1-61779-185-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics