Synchronization of In Vitro Maturation in Porcine Oocytes

  • Tamas SomfaiEmail author
  • Yuji Hirao
Part of the Methods in Molecular Biology book series (MIMB, volume 761)


When removed from the follicles, during the 44 h process of in vitro maturation (IVM) fully grown porcine oocytes resume meiosis spontaneously from the late diplotene stage of the first meiotic prophase and proceed to the metaphase-II (MII) stage at which they remain arrested until fertilization. However, the resumption may start at various times causing heterogeneity in the nuclear stage and also in cytoplasmic characteristics (i.e., the activity of certain protein kinases) within a population. Those oocytes that reach the MII stage earlier than others undergo an ageing process which is detrimental for further embryo development. The synchronization of nuclear progression is possible by a transient inhibition of meiotic resumption during the first 20–22 h of IVM either by (1) the elevation of intracellular levels of cyclic adenosine monophosphate (cAMP) or (2) suppressing the activity of the metaphase promoting factor (MPF). A protocol for each approach is described.

Key words

Porcine oocyte in vitro maturation cAMP MPF 


  1. 1.
    Betthauser, J., Forsberg, E., Augenstein, M., Childs, L., Eilertsen, K., Enos, J., et al. (2000) Production of cloned pigs from in vitro systems. Nat. Biotechnol. 18, 1055–1059.PubMedCrossRefGoogle Scholar
  2. 2.
    Manabe, N., Goto, Y., Matsuda-Minehata, F., Inoue, N., Maeda, A., and Manabe, N. (2004) Regulation mechanism of selective atresia in porcine follicles: regulation of granulosa cell apoptosis during atresia. J. Reprod. Dev. 50, 493–514.PubMedCrossRefGoogle Scholar
  3. 3.
    Marchal, R., Vigneron, C., Perreau, C., Bali-Papp, Á., and Mermillod, P. (2002) Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology 57, 1523–1532.PubMedCrossRefGoogle Scholar
  4. 4.
    Motlik, J., and Fulka, J. (1976) Breakdown of the germinal vesicle in pig oocytes in vivo and in vitro. J. Exp. Zool. 198, 155–162.PubMedCrossRefGoogle Scholar
  5. 5.
    Pincus, G., and Enzmann, E. V. (1935) The comparative behavior of mammalian eggs in vivo and in vitro. I. The activation of ovarian eggs. J. Exp. Med. 62, 665–675.PubMedCrossRefGoogle Scholar
  6. 6.
    Wehrend, A., and Meinecke, B. (2001) Kinetics of meiotic progression, M phase promoting factor (MPF) and mitogen-activated protein kinase (MAP kinase) activities during in vitro maturation of porcine and bovine oocytes: species specific differences in the length of the meiotic stages. Anim. Reprod. Sci. 66, 175–184.PubMedCrossRefGoogle Scholar
  7. 7.
    Funahashi, H., Cantley, T. C., and Day, B. N. (1997) Preincubation of cumulus–oocyte complexes before exposure to gonadotropins improves the developmental competence of porcine embryos matured and fertilized in vitro. Theriogenology 47, 679–686.PubMedCrossRefGoogle Scholar
  8. 8.
    Nagai, T., Ebihara, M., Onishi, A., and Kubo, M. (1997) Germinal vesicle stages in pig follicular oocytes collected by different methods. J. Reprod. Dev. 43, 339–343.CrossRefGoogle Scholar
  9. 9.
    Mcgaughey, R. W., Montgomery, D. H., and Richter, J. D. (1979) Germinal vesicle configurations and patterns of polypeptide synthesis of porcine oocytes from antral follicles of different size as related to their competence for spontaneous maturation. J. Exp. Zool. 209, 239–254.PubMedCrossRefGoogle Scholar
  10. 10.
    Funahashi, H., Cantley, T. C., and Day, B. N. (1997) Synchronization of meiosis in porcine oocytes by exposure to dibutyryl cyclic adenosine monophosphate improves developmental competence following in vitro fertilization. Biol. Reprod. 57, 49–53.PubMedCrossRefGoogle Scholar
  11. 11.
    Somfai, T., Kikuchi, K., Onishi, A., Iwamoto, M., Fuchimoto, D., Papp, A. B., et al. (2004) Relationship between the morphological changes of somatic compartment and the kinetics of nuclear and cytoplasmic maturation of oocytes during in vitro maturation of porcine follicular oocytes. Mol. Reprod. Dev. 68, 484–491.PubMedCrossRefGoogle Scholar
  12. 12.
    Alfonso, J., García-Rosello, E., García-Mengual, E., Salvador, I., and Silvestre, M. A. (2009) The use of roscovitine to fit the ‘time frame’ on in vitro porcine embryo production by intracytoplasmic sperm injection. Zygote 17, 63–70.PubMedCrossRefGoogle Scholar
  13. 13.
    Bagg, M. A., Nottle, M. B., Grupen, C. G., and Armstrong, D. T. (2006) Effect of dibutyryl cAMP on the cAMP content, meiotic progression, and developmental potential of in vitro matured pre-pubertal and adult pig oocytes. Mol. Reprod. Dev. 73, 1326–1332.PubMedCrossRefGoogle Scholar
  14. 14.
    Hashimoto, N., and Kishimoto, T. (1988) Regulation of meiotic metaphase by a cytoplasmic maturation promoting factor during mouse oocyte maturation. Dev. Biol. 126, 242–252.PubMedCrossRefGoogle Scholar
  15. 15.
    Kubelka, M., Rimkeviĉová, Z., Guerrier, P., and Motlík, J. (1995) Inhibition of protein synthesis affects histone H1 kinase, but not chromosome condensation activity, during the first meiotic division of pig oocytes. Mol. Reprod. Dev. 41, 63–69.PubMedCrossRefGoogle Scholar
  16. 16.
    Kubelka, M., Anger, M., Kalous, J., Schultz, R. M., and Motlík, J. (2002) Chromosome condensation in pig oocytes: lack of a requirement for either cdc2 kinase or MAP kinase activity. Mol. Reprod. Dev. 63, 110–118.PubMedCrossRefGoogle Scholar
  17. 17.
    Hirao, Y., Nishimoto, N., Kure-bayashi, S., Takenouchi, N., Yamauchi, N., Masuda, H., et al. (2003) Influence of meiotic inhibition by butyrolactone-I during germinal vesicle stage on the ability of porcine oocytes to be activated by electric stimulation after nuclear maturation. Zygote 11, 191–197.PubMedCrossRefGoogle Scholar
  18. 18.
    Downs, S. M., Schroeder, A. C., and Eppig J. J. (1986) Developmental capacity of mouse oocytes following maintenance of meiotic arrest in vitro. Gamete Res. 15, 305–316.CrossRefGoogle Scholar
  19. 19.
    Hashimoto, S., Minami, N., Takakura, R., and Imai, H. (2002) Bovine immature oocytes acquire developmental competence during meiotic arrest in vitro. Biol. Reprod. 66, 1696–1701.PubMedCrossRefGoogle Scholar
  20. 20.
    Somfai, T., Kikuchi, K., Onishi, A., Iwamoto, M., Fuchimoto, D., Papp, A. B., et al. (2003) Meiotic arrest maintained by cAMP during the initiation of maturation enhances meiotic potential and developmental competence and reduces polyspermy of IVM/IVF porcine oocytes. Zygote 11, 199–206.PubMedCrossRefGoogle Scholar
  21. 21.
    Kim, J. S., Cho, Y. S., Song, B. S., Weec, G., Park, J. S., Choo, Y. K., et al. (2008) Exogenous dibutyryl cAMP affects meiotic maturation via protein kinase A activation; it stimulates further embryonic development including blastocyst quality in pigs. Theriogenology 69, 290–301.PubMedCrossRefGoogle Scholar
  22. 22.
    Nagai, T., Funahashi, H., Yoshioka, K., and Kikuchi, K. (2006) Update of in vitro production of porcine embryos. Front. Biosci. 11, 2565–2573.PubMedCrossRefGoogle Scholar
  23. 23.
    Grupen, C. G., Nagashima, H., and Nottle, M. B. (1997) Asynchronous meiotic progression in porcine oocytes matured in vitro: a cause of polyspermic fertilization? Reprod. Fertil. Dev. 9, 187–191.PubMedCrossRefGoogle Scholar
  24. 24.
    Miao, Y. L., Kikuchi, K., Sun, Q. Y., and Schatten, H. (2009) Oocyte aging: cellular and molecular changes, developmental potential and reversal possibility. Hum. Reprod. Update 15, 573–585.PubMedCrossRefGoogle Scholar
  25. 25.
    Dinnyés, A., Hirao, Y., and Nagai, T. (2000) Parthenogenetic activation of porcine oocytes by electric pulse and/or butyrolactone I treatment. Cloning 1, 209–216.CrossRefGoogle Scholar
  26. 26.
    Motlik, J., Pavlok, A., Kubelka, M., Kalous, J., and Kalab, P. (1998) Interplay between CDC2 kinase and MAP kinase pathway during maturation of mammalian oocytes. Theriogenology 49, 461–469.PubMedCrossRefGoogle Scholar
  27. 27.
    Kubelka, M., Motlík, J., Schultz, R. M., and Pavlok, A. (2000) Butyrolactone I reversibly inhibits meiotic maturation of bovine oocytes, without influencing chromosome condensation activity. Biol. Reprod. 62, 292–302.PubMedCrossRefGoogle Scholar
  28. 28.
    Petters, R. M., and Wells, K. D. (1995) Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73.Google Scholar
  29. 29.
    Kikuchi, K., Onishi, A., Kashiwazaki, N., Iwamoto, M., Noguchi, J., Kaneko, H., et al. (2002) Successful piglet production after transfer of blastocysts produced by a modified in vitro system. Biol. Reprod. 66, 1033–1041.PubMedCrossRefGoogle Scholar
  30. 30.
    Shimada, M., Nishibori, M., Isobe, N., Kawano, N., and Terada, T. (2003) Luteinizing hormone receptor formation in cumulus cells surrounding porcine oocytes, and its role during meiotic maturation of porcine oocytes. Biol. Reprod. 68, 1149–1159.Google Scholar
  31. 31.
    Shimada, M., Ito, J., Yamashita, Y., Okazaki, T., and Isobe, N. (2003) Phosphatidylinositol 3-kinase in cumulus cells is responsible for both suppression of spontaneous maturation and induction of gonadotropin-stimulated maturation of porcine oocytes. J. Endocrinol. 179, 25–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Maedomari, N., Kikuchi, K., Ozawa, M., Noguchi, J., Kaneko, H., Ohnuma, K., et al. (2007) Cytoplasmic glutathione regulated by cumulus cells during porcine oocyte maturation affects fertilization and embryonic development in vitro. Theriogenology 67, 983–993.PubMedCrossRefGoogle Scholar
  33. 33.
    Bornslaeger, E. A., Mattei, P., and Schultz, R. M. (1986) Involvement of cAMP-dependent protein kinase and protein phosphorylation in regulation of mouse oocyte maturation. Dev. Biol. 114, 453–462.PubMedCrossRefGoogle Scholar
  34. 34.
    Cameron, I. L. (1987) Maintenance of oocyte meiotic arrest by follicular fluid factors. In: Schlegel, R. A., Halleck, M. S., Rao, P. N. (Eds.) Molecular Regulation of Nuclear Events in Mitosis and Meiosis, Academic, New York, NY.Google Scholar
  35. 35.
    Sun, Q. Y., Miao, Y. L., and Schatten, H. (2008) Towards a new understanding on the regulation of mammalian oocyte meiosis resumption. Cell Cycle 8, 2741–2747.CrossRefGoogle Scholar
  36. 36.
    Bornslaeger, E. A., and Schultz, R. M. (1985) Regulation of mouse oocyte maturation: Effect of elevating cumulus cell cAMP on oocyte cAMP levels. Biol. Reprod. 33, 698–704.PubMedCrossRefGoogle Scholar
  37. 37.
    Mattioli, M., Galeati, G., Barboni, B., and Seren, E. (1994) Concentration of cyclic AMP during the maturation of pig oocytes in vivo and in vitro. J. Reprod. Fertil. 100, 403–409.PubMedCrossRefGoogle Scholar
  38. 38.
    Schultz, R. M., Montgomery, R. R., and Belanoff, J. R. (1983) Regulation of mouse oocyte meiotic maturation: implication of a decrease in oocyte cAMP and protein dephosphorylation in commitment to resume meiosis. Dev. Biol. 97, 264–273.PubMedCrossRefGoogle Scholar
  39. 39.
    Sun, Q. Y., Lu, Q., Breitbart, H., and Chen, D. Y. (1999) cAMP inhibits mitogen-activated protein (MAP) kinase activation and resumption of meiosis, but exerts no effects after spontaneous germinal vesicle breakdown (GVBD) in mouse oocytes. Reprod. Fertil. Dev. 11, 81–86.PubMedCrossRefGoogle Scholar
  40. 40.
    Sun, Q. Y., and Nagai, T. (2003) Molecular mechanisms underlying pig oocyte maturation and fertilization. J. Reprod. Dev. 49, 347–359.PubMedCrossRefGoogle Scholar
  41. 41.
    Mermillod, P., Tomanek, M., Marchal, R., and Meijer, L. (2000) High developmental competence of cattle oocytes maintained at the germinal vesicle stage for 24 hours in culture by specific inhibition of MPF kinase activity. Mol. Reprod. Dev. 55, 89–95.PubMedCrossRefGoogle Scholar
  42. 42.
    Marchal, R., Tomanek, M., Terqui, M., and Mermillod, P. (2001) Effects of cell cycle dependent kinases inhibitor on nuclear and cytoplasmic maturation of porcine oocytes. Mol. Reprod. Dev. 60, 65–73.PubMedCrossRefGoogle Scholar
  43. 43.
    Wu, G. M., Sun, Q. Y., Mao, J., Lai, L., McCauley, T. C., Park, K. W., et al. (2002) High developmental competence of pig oocytes after meiotic inhibition with a specific M phase promoting factor kinase inhibitor, butyrolactone I. Biol. Reprod. 67, 170–177.PubMedCrossRefGoogle Scholar
  44. 44.
    Motlik, J., Nagai, T., and Kikuchi, K. (1991) Resumption of meiosis in pig oocytes cultured with cumulus and parietal granulosa cells: the effect of protein synthesis inhibition. J. Exp. Zool. 259, 386–391.PubMedCrossRefGoogle Scholar
  45. 45.
    Kubelka, M., Motík, J., Fulka, J., Jr., Procházka, R., Rimkevicová, Z., and Fulka, J. (1988) Time sequence of germinal vesicle breakdown in pig oocytes after cycloheximide and P-aminobenzamidine block. Gamete Res. 19, 423–431.PubMedCrossRefGoogle Scholar
  46. 46.
    Avery, B., Hay-Schmidt, A., Hyttel, P., and Greve, T. (1998) Embryo development, oocyte morphology, and kinetics of meiotic maturation in bovine oocytes exposed to 6-dimethylaminopurine prior to in vitro maturation. Mol. Reprod. Dev. 50, 334–344.PubMedCrossRefGoogle Scholar
  47. 47.
    Lonergan, P., Fair, T., Khatir, H., Cesaroni, G., and Mermillod, P. (1998) Effect of protein synthesis inhibition before or during in vitro maturation on subsequent development of bovine oocytes. Theriogenology 50, 417–431.PubMedCrossRefGoogle Scholar
  48. 48.
    Bilodeau, S., Fortier, M. A., and Sirard, M. A. (1993) Effect of adenylate cyclase stimulation on meiotic resumption and cyclic AMP content of zona-free and cumulus-enclosed bovine oocytes in vitro. J. Reprod. Fertil. 97, 5–11.PubMedCrossRefGoogle Scholar
  49. 49.
    Bagg, M. A., Nottle, M. B., Armstrong, D. T., and Grupen, C. G. (2007) Relationship between follicle size and oocyte developmental competence in prepubertal and adult pigs. Reprod. Fertil. Dev. 19, 797–803.PubMedCrossRefGoogle Scholar
  50. 50.
    Ozawa, M., Nagai, T., Somfai, T., Nakai, M., Maedomari, N., Fahrudin, M., et al. (2008) Comparison between effects of 3-isobutyl-1-methylxanthine and FSH on gap junctional communication, LH-receptor expression, and meiotic maturation of cumulus-oocyte complexes in pigs. Mol. Reprod. Dev. 75, 857–866.PubMedCrossRefGoogle Scholar
  51. 51.
    Fair, T., Hyttel, P., Motlik, J., Boland, M., and Lonergan, P. (2002). Maintenance of meiotic arrest in bovine oocytes in vitro using butyrolactone I: effects on oocyte ultrastructure and nucleolus function. Mol. Reprod. Dev. 62, 375–386.PubMedCrossRefGoogle Scholar
  52. 52.
    Romar, R., and Funahashi, H. (2006) In vitro maturation and fertilization of porcine oocytes after a 48 h culture in roscovitine, an inhibitor of p34cdc2/cyclin B kinase. Anim. Reprod. Sci. 92, 321–333.PubMedCrossRefGoogle Scholar
  53. 53.
    Coy, P., Romar, R., Ruiz, S., Cánovas, S., Gadea, J., García Vázquez, F., et al. (2005) Birth of piglets after transferring of in vitro-produced embryos pre-matured with R-roscovitine. Reproduction 129, 747–755.PubMedCrossRefGoogle Scholar
  54. 54.
    Ponderato, N., Lagutina, I., Crotti, G., Turini, P., Galli, C., and Lazzari, G. (2001) Bovine oocytes treated prior to in vitro maturation with a combination of butyrolactone I and roscovitine at low doses maintain a normal developmental capacity. Mol. Reprod. Dev. 60, 579–585.PubMedCrossRefGoogle Scholar
  55. 55.
    Mattioli, M., Bacci, M. L., Galeati, G., and Seren, E. (1989) Developmental competence of pig oocytes matured and fertilized in vitro. Theriogenology 31, 1201–1207.PubMedCrossRefGoogle Scholar
  56. 56.
    Yoshioka, K., Suzuki, C., and Onishi, A. (2008) Defined system for in vitro production of porcine embryos using a single basic medium. J. Reprod. Dev. 54, 208–213.PubMedCrossRefGoogle Scholar
  57. 57.
    Abeydeera, L. R., Wang, W. H., Prather, R. S., and Day, B. N. (1998) Maturation in vitro of pig oocytes in protein-free culture media: fertilization and subsequent embryo development in vitro. Biol. Reprod. 58, 1316–1320.PubMedCrossRefGoogle Scholar
  58. 58.
    Aktas, H., Wheeler, M. B., First, N. L., and Leibfried-Rutledge, M. L. (1995) Maintenance of meiotic arrest by increasing [cAMP]i may have physiological relevance in bovine oocytes. J. Reprod. Fertil. 105, 237–245.PubMedCrossRefGoogle Scholar
  59. 59.
    Racowsky, C. (1985) Effect of forskolin on maintenance of meiotic arrest and stimulation of cumulus expansion, progesterone and cyclic AMP production by pig oocyte-cumulus complexes. J. Reprod. Fertil. 74, 9–21.PubMedCrossRefGoogle Scholar
  60. 60.
    Tsafriri, A., Chun, S. Y., Zhang, R., Hsueh, A. J., and Conti, M. (1996) Oocyte maturation involves compartmentalization and opposing changes of cAMP levels in follicular somatic and germ cells: studies using selective phosphodiesterase inhibitors. Dev. Biol. 178, 393–402.PubMedCrossRefGoogle Scholar
  61. 61.
    Luciano, A. M., Pocar, P., Milanesi, E., Modina, S., Rieger, D., Lauria, A., et al. (1999) Effect of different levels of intracellular cAMP on the in vitro maturation of cattle oocytes and their subsequent development following in vitro fertilization. Mol. Reprod. Dev. 54, 86–91.PubMedCrossRefGoogle Scholar
  62. 62.
    Hirao, Y., Tsuji, Y., Miyano, T., Okano, A., Miyake, M., Kato, S., et al. (1995) Association between p34cdc2 levels and meiotic arrest in pig oocytes during early growth. Zygote 3, 325–332.PubMedCrossRefGoogle Scholar
  63. 63.
    Kopecny, V. (1989) High-resolution autoradiographic studies of comparative nucleogenesis and genome reactivation during early embryogenesis in pig, man, and cattle. Reprod. Nutr. Dev. 29, 589–600.PubMedCrossRefGoogle Scholar
  64. 64.
    Iwamoto, M., Onishi, A., Fuchimoto, D., Somfai, T., Takeda, K., Tagami, T., et al. (2005) Low oxygen tension during in vitro maturation of porcine follicular oocytes improves parthenogenetic activation and subsequent development to the blastocyst stage. Theriogenology 63, 1277–1289.PubMedCrossRefGoogle Scholar
  65. 65.
    Dominko, T., Chan, A., Simerly, C., Luetjens, C. M., Hewitson, L., Martinovich, C., et al. (2000) Dynamic imaging of the metaphase II spindle and maternal chromosomesin bovine oocytes: implications for enucleation efficiency verification, avoidance of parthenogenesis, and successful embryogenesis. Biol. Reprod. 62, 150–154.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.National Agriculture and Food Research Organization (NARO), National Institute of Livestock and Grassland Science (NILGS)IbarakiJapan
  2. 2.National Agriculture and Food Research Organization (NARO), National Agricultural Research Center for Tohoku Region (NARCT)MoriokaJapan

Personalised recommendations