Advertisement

Synchronization of Bacillus subtilis Cells by Spore Germination and Outgrowth

  • Gaspar BanfalviEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 761)

Abstract

This protocol defines conditions under which the germination of spores can be used to synchronize Bacillus subtilis cells, utilizing the time-ordered sequence of events taking place during the transition from spore to vegetative cells. The transition stages involve: phase change, swelling, emergence, initial division, and elongation. By using this method we have obtained two distinctive synchronized cell cycles, while the synchrony faded away in the third cycle. The advantage of using spore outgrowth and germination is that a highly synchronized population of bacterial cells can be obtained. The limitations of this method are that it can be applied only for sporulating bacteria and synchrony lasts for only a limited period of time exceeding not more than two cycles.

Key words

Endospore formation spore outgrowth transition stage vegetative cells permeabilization DNA synthesis spectrophotometry 

References

  1. 1.
    Graumann, P. (Ed.). (2007) Bacillus: Cellular and molecular biology (1st Ed.). Caister Academic Press, Wymondham. http://www.horizonpress.com/bac Google Scholar
  2. 2.
    Hansen, J. N., Spiegelman, G., and Halvorson, H. O. (1970) Bacterial spore outgrowth: Its regulation. Science 168, 1291–1298.PubMedCrossRefGoogle Scholar
  3. 3.
    Keynan, A. (1973) The transformation of bacterial endospores into vegetative cells. Symp. Soc. Gen. Microbiol. 23, 85–123.Google Scholar
  4. 4.
    Mandelstam, J. (1976) Bacterial sporulation: A problem in the biochemistry and genetics of a primitive developmental system. Proc. R. Soc. B. 193, 89–106.CrossRefGoogle Scholar
  5. 5.
    Nelson, D. L., and Kornberg, A. (1970) Biochemical studies of bacterial sporulation and germination. XVIII. Free amino acids in spores. J. Biol. Chem. 245, 1128–1136.PubMedGoogle Scholar
  6. 6.
    Setlow, P., and Kornberg, A. (1970) Biochemical studies of bacterial sporulation and germination. XXIII. Nucleotide metabolism during spore germination. J. Biol. Chem. 245, 3645–3652.PubMedGoogle Scholar
  7. 7.
    Balassa, G. (1965) Synthesis macromoleculaires au cours de la germination des spores de B. subtilis. I. Cinctique Annales De I’lnstitut Pasteur 109, 13–35.Google Scholar
  8. 8.
    Balassa, G. (1969) Biochemical genetics of bacterial sporulation. I. Unidirectional pleiotropic interactions among genes controlling sporulation in Bacillus subtilis. Mol. Gen. Genet. 104, 73–103.PubMedGoogle Scholar
  9. 9.
    Kobayashi, I, Steinberg, W., Higa, A., Halvorson, H. O., and Levinthal, C. (1965) Sequential synthesis of macromolecules during outgrowth of bacterial spores. In Spores IZZ, pp. 200–212. L. L. Campbell and H. O. Halvorson (Eds.). Washington, DC: American Society for Microbiology.Google Scholar
  10. 10.
    Torriani, A., and Levinthal, C. (1967) Ordered synthesis of proteins during outgrowth of spores of B. Cereus. J. Bacteriol. 94, 176–183.PubMedGoogle Scholar
  11. 11.
    Armstrong, R. L., and Sueoka, N. (1968) Phase transition in ribonucleic acid synthesis during germination of B. subtilis spores. Proc. Natl. Acad. Sci. USA 59, 153–160.PubMedCrossRefGoogle Scholar
  12. 12.
    Steinberg, W., and Halvorson, H. O. (1968) Timing of enzyme synthesis during outgrowth of Bacillus Cereus. I. Ordered enzyme synthesis. J. Bacteriol. 95, 469–478.PubMedGoogle Scholar
  13. 13.
    Kennett, R. N., and Sueoka, N. (1971) Gene expression during outgrowth of B. subtilis spores. The relationship between order on the chromosome and temporal sequence of enzyme synthesis. J. Mol. Biol. 60, 31–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Campbell, L. L., Jr. (1957) In Spores, p. 33. H. Halvorson (Ed.). Washington, DC: American Institute of Biological Sciences.Google Scholar
  15. 15.
    Levinson, H. S., and Hyatt, M. T. (1956) Correlation of respiratory activity with phases of spore germination and growth in Bacillus megaterium as influenced by manganese and L-alanine. J. Bacteriol. 72, 176–183.PubMedGoogle Scholar
  16. 16.
    Halvorson, H. O. (1959) Symposium on initiation of bacterial growth. Bacteriol. Rev. 23, 267–272.PubMedGoogle Scholar
  17. 17.
    Harrell, W. K., and Halvorson, H. (1955) Studies on the role of L-alanine in the germination of spores of Bacillus terminalis. J. Bacteriol. 69, 275–279.PubMedGoogle Scholar
  18. 18.
    Yasuda, Y., and Tochikubo, K. (1984) Relation between D-glucose and L- and D-alanine in the initiation of germination of Bacillus subtilis spores. Microbiol. Immunol. 28, 197–207.PubMedGoogle Scholar
  19. 19.
    McCann, K. P., Robinson, C., Sammons, R. L., Smith, D. A., and Corfe, B. M. (1996) Alanine germination receptors of Bacillus subtilis. Lett. Appl. Microbiol. 23, 290–294.PubMedCrossRefGoogle Scholar
  20. 20.
    Liang, L., Gai, Y., Hu, K., and Liu, G. (2008) The gerA operon is required for spore germination in Bacillus thuringiensis. Wei Sheng Wu Xue Bao. 48, 281–286. (Article in Chinese)PubMedGoogle Scholar
  21. 21.
    Powell, J. F. (1950) Factors affecting the germination of thick suspensions of Bacillus subtilis spores in L-alanine solution. J. Gen. Microbiol. 4, 330–338.PubMedGoogle Scholar
  22. 22.
    Pulvertaft, R. J. V., and Haynes, J. A. (1951) Adenosine and spore germination; phasecontrast studies. J. Gen. Microbiol. 5, 657–663.PubMedGoogle Scholar
  23. 23.
    Powell, J. F., and Strange, R. E. (1953) Biochemical changes occurring during the germination of bacterial spores. Biochem. J. 54, 205–209.PubMedGoogle Scholar
  24. 24.
    Murrell, W. G., and Scott W. J. (1958) The permeability of bacterial spores to water. Proc. 7th Int. Congr. Microbiol. Stockholm, p. 26.Google Scholar
  25. 25.
    Powell, J. F. (1957) Biochemical changes occurring during spore germination in bacillus species. J. Appl. Bacteriol. 20, 349–358.Google Scholar
  26. 26.
    Bhattacharya, S., and Sarkar, N. (1981) Study of deoxyribonucleic acid replication in permeable cells of Bacillus subtilis using mercurated nucleotide substrates. Biochemistry 20, 3029–3034.PubMedCrossRefGoogle Scholar
  27. 27.
    Woese, C., and Morowitz, H. J. (1958) Kinetics of the release of dipicolinic acid from spores of Bacillus subtilis. J. Bacteriol. 76, 81–83.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Microbial Biotechnology and Cell BiologyUniversity of DebrecenDebrecenHungary

Personalised recommendations