Advertisement

Posttranslational Regulation of G Protein-Coupled Receptors

  • Yu QiuEmail author
  • Ping-Yee Law
Protocol
Part of the Neuromethods book series (NM, volume 60)

Abstract

The G protein-coupled receptors (GPCRs) are a superfamily of transmembrane receptors that ­structurally possess an extracellular amino terminus, seven transmembrane domains linked by extracellular and intracellular loops, and a cytoplasmic carboxyl terminus. They are synthesized by ribosomes and enter into the endoplasmic reticulum (ER), from which they are transported to Golgi apparatus and the trans-Golgi network (TGN) and finally move to the plasma membrane. At the plasma membrane, GPCRs receive environmental stimuli and relay the message to the cells. During these processes, GPCRs undergo posttranslational modifications that regulate their maturation, their function at the cell surface and even the ultimate fate of the internalized receptor after agonist treatment. There are four major types of posttranslational modifications – glycosylation, phosphorylation, palmitoylation, and ubiquitination, each of which has distinct roles in expression and function of GPCRs. In this ­chapter we discuss the methods to study these posttranslational modifications and the findings of posttranslational modifications and their functional consequences on GPCRs, using opioid receptors as the main examples. Moreover, the detailed steps of the main methods are depicted and also our thoughts on future directions of this avenue of research.

Key words

G protein-coupled receptors Posttranslational regulation Opioid receptor Glycosylation Phosphorylation Palmitoylation Ubiquitination 

References

  1. 1.
    Pierce KL, Premont RT and Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650PubMedCrossRefGoogle Scholar
  2. 2.
    Achour L, Labbe-Jullie C, Scott MG et al (2008) An escort for GPCRs: implications for regulation of receptor density at the cell surface. Trends Pharmacol Sci 29:528–535PubMedCrossRefGoogle Scholar
  3. 3.
    Stiles GL, Benovic JL, Caron MG et al (1984) Mammalian beta-adrenergic receptors. Distinct glycoprotein populations containing high mannose or complex type carbohydrate chains. J Biol Chem 259:8655–8663PubMedGoogle Scholar
  4. 4.
    George ST, Ruoho AE and Malbon CC (1986) N-glycosylation in expression and function of beta-adrenergic receptors. J Biol Chem 261:16559–16564PubMedGoogle Scholar
  5. 5.
    Law PY, Ungar HG, Hom DS et al (1985) Effects of cycloheximide and tunicamycin on opiate receptor activities in neuroblastoma X glioma NG108-15 hybrid cells. Biochem Pharmacol 34:9–17.PubMedCrossRefGoogle Scholar
  6. 6.
    McLawhon RW, Cermak D, Ellory JC et al (1983) Glycosylation-dependent regulation of opiate (enkephalin) receptors in neurotumor cells. J Neurochem 41:1286–1296.PubMedCrossRefGoogle Scholar
  7. 7.
    Liu-Chen LY, Chen C and Phillips CA (1993) Beta-(3H)funaltrexamine-labeled mu-opioid receptors: species variations in molecular mass and glycosylation by complex-type, N-linked oligosaccharides. Mol Pharmacol 44:749–756PubMedGoogle Scholar
  8. 8.
    Petaja-Repo UE, Hogue M, Laperriere A et al (2000) Export from the endoplasmic reticulum represents the limiting step in the maturation and cell surface expression of the human delta opioid receptor. J Biol Chem 275:13727–13736PubMedCrossRefGoogle Scholar
  9. 9.
    Li JG, Chen C and Liu-Chen LY (2007) N-Glycosylation of the human kappa opioid receptor enhances its stability but slows its trafficking along the biosynthesis pathway. Biochemistry 46: 10960–10970PubMedCrossRefGoogle Scholar
  10. 10.
    Gallagher JT, Morris A and Dexter TM (1985) Identification of two binding sites for ­wheat-germ agglutinin on polylactosamine-type oligosaccharides. Biochem J 231:115–122PubMedGoogle Scholar
  11. 11.
    Bowen WD and Kooper G (1986) Photoaffinity labeling of opiate receptors with 3H-etorphine: possible species differences in glycosylation. NIDA Res Monogr 75:17–20PubMedGoogle Scholar
  12. 12.
    Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 103:21–80PubMedCrossRefGoogle Scholar
  13. 13.
    Rands E, Candelore MR, Cheung AH et al (1990) Mutational analysis of beta-adrenergic receptor glycosylation. J Biol Chem 265:10759–10764PubMedGoogle Scholar
  14. 14.
    Mialet-Perez J, Green SA, Miller WE et al (2004) A primate-dominant third glycosylation site of the beta2-adrenergic receptor routes receptors to degradation during ­agonist regulation. J Biol Chem 279:38603–38607PubMedCrossRefGoogle Scholar
  15. 15.
    Ge X, Loh HH and Law PY (2009) Mu-opioid receptor cell surface expression is regulated by its direct interaction with ribophorin I. Mol Pharmacol 75:1307–1316PubMedCrossRefGoogle Scholar
  16. 16.
    Bond C, LaForge KS, Tian M et al (1998) Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA 95:9608–9613PubMedCrossRefGoogle Scholar
  17. 17.
    Garzon J, Juarros JL, Castro MA et al (1995) Antibodies to the cloned mu-opioid receptor detect various molecular weight forms in areas of mouse brain. Mol Pharmacol 47:738–744PubMedGoogle Scholar
  18. 18.
    Huang P, Chen C, Xu W et al (2008) Brain region-specific N-glycosylation and lipid rafts association of the rat mu opioid receptor. Biochem Biophys Res Commun 365:82–88PubMedCrossRefGoogle Scholar
  19. 19.
    Nagamatsu K, Suzuki K, Teshima R et al (1989) Morphine enhances the phosphorylation of a 58 kDa protein in mouse brain membranes. Biochem J 257:165–171PubMedGoogle Scholar
  20. 20.
    Pei G, Kieffer BL, Lefkowitz RJ et al (1995) Agonist-dependent phosphorylation of the mouse delta-opioid receptor: involvement of G protein-coupled receptor kinases but not protein kinase C. Mol Pharmacol 48:173–177PubMedGoogle Scholar
  21. 21.
    Arden JR, Segredo V, Wang Z et al (1995) Phosphorylation and agonist-specific intracellular trafficking of an epitope-tagged mu-­opioid receptor expressed in HEK 293 cells. J Neurochem 65:1636–1645PubMedCrossRefGoogle Scholar
  22. 22.
    Appleyard SM, Patterson TA, Jin W et al (1997) Agonist-induced phosphorylation of the kappa-opioid receptor. J Neurochem 69:2405–2412PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang J, Ferguson SS, Barak LS et al (1998) Role for G protein-coupled receptor kinase in agonist-specific regulation of mu-opioid receptor responsiveness. Proc Natl Acad Sci USA 95:7157–7162PubMedCrossRefGoogle Scholar
  24. 24.
    El Kouhen R, Burd AL, Erickson-Herbrandson LJ et al (2001) Phosphorylation of Ser363, Thr370, and Ser375 residues within the carboxyl tail differentially regulates mu-opioid receptor internalization. J Biol Chem 276:12774–12780PubMedCrossRefGoogle Scholar
  25. 25.
    Deng HB, Yu Y, Pak Y et al (2000) Role for the C-terminus in agonist-induced mu opioid receptor phosphorylation and desensitization. Biochemistry 39:5492–5499PubMedCrossRefGoogle Scholar
  26. 26.
    Kouhen OM, Wang G, Solberg J et al (2000) Hierarchical phosphorylation of delta-opioid receptor regulates agonist-induced receptor desensitization and internalization. J Biol Chem 275:36659–36664PubMedCrossRefGoogle Scholar
  27. 27.
    Guo J, Wu Y, Zhang W et al (2000) Identification of G protein-coupled receptor kinase 2 phosphorylation sites responsible for agonist-stimulated delta-opioid receptor phosphorylation. Mol Pharmacol 58:1050–1056PubMedGoogle Scholar
  28. 28.
    McLaughlin JP, Xu M, Mackie K et al (2003) Phosphorylation of a carboxyl-terminal serine within the kappa-opioid receptor produces desensitization and internalization. J Biol Chem 278:34631–34640PubMedCrossRefGoogle Scholar
  29. 29.
    Schulz S, Mayer D, Pfeiffer M et al (2004) Morphine induces terminal mu-opioid receptor desensitization by sustained phosphorylation of serine-375. EMBO J 23:3282–3289PubMedCrossRefGoogle Scholar
  30. 30.
    Navratilova E, Waite S, Stropova D et al (2007) Quantitative evaluation of human delta opioid receptor desensitization using the operational model of drug action. Mol Pharmacol 71:1416–1426PubMedCrossRefGoogle Scholar
  31. 31.
    McLaughlin JP and Chavkin C (2001) Tyrosine phosphorylation of the mu-opioid receptor regulates agonist intrinsic efficacy. Mol Pharmacol 59:1360–1368PubMedGoogle Scholar
  32. 32.
    Appleyard SM, McLaughlin JP and Chavkin C (2000) Tyrosine phosphorylation of the kappa-opioid receptor regulates agonist efficacy. J Biol Chem 275:38281–38285PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang L, Zhao H, Qiu Y et al (2009) Src phosphorylation of mu-receptor is responsible for the receptor switching from an inhibitory to a stimulatory signal. J Biol Chem 284:1990–2000PubMedCrossRefGoogle Scholar
  34. 34.
    Clayton CC, Bruchas MR, Lee ML et al (2010) Phosphorylation of the mu-opioid receptor at tyrosine 166 (Y3.51) in the DRY motif reduces agonist efficacy. Mol Pharmacol 77:339–347PubMedCrossRefGoogle Scholar
  35. 35.
    Kramer HK, Andria ML, Esposito DH et al (2000) Tyrosine phosphorylation of the delta-opioid receptor. Evidence for its role in mitogen-activated protein kinase activation and receptor internalization. Biochem Pharmacol 60:781–792PubMedCrossRefGoogle Scholar
  36. 36.
    Kramer HK, Andria ML, Kushner SA et al (2000) Mutation of tyrosine 318 (Y318F) in the delta-opioid receptor attenuates tyrosine phosphorylation, agonist-dependent receptor internalization, and mitogen-activated protein kinase activation. Brain Res Mol Brain Res 79:55–66PubMedCrossRefGoogle Scholar
  37. 37.
    Papac DI, Oatis JE, Jr., Crouch RK et al (1993) Mass spectrometric identification of phosphorylation sites in bleached bovine rhodopsin. Biochemistry 32:5930–5934PubMedCrossRefGoogle Scholar
  38. 38.
    Trester-Zedlitz M, Burlingame A, Kobilka B et al (2005) Mass spectrometric analysis of agonist effects on posttranslational modifications of the beta-2 adrenoceptor in mammalian cells. Biochemistry 44:6133–6143PubMedCrossRefGoogle Scholar
  39. 39.
    Tobin AB, Butcher AJ and Kong KC (2008) Location, location, location…site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signaling. Trends Pharmacol Sci 29:413–420PubMedCrossRefGoogle Scholar
  40. 40.
    Tobin AB (2008) G-protein-coupled receptor phosphorylation: where, when and by whom. Br J Pharmacol 153 Suppl 1:S167–176PubMedGoogle Scholar
  41. 41.
    Chakrabarti S, Law PY and Loh HH (1998) Distinct differences between morphine- and [D-Ala2,N-MePhe4,Gly-ol5]-enkephalin-mu-opioid receptor complexes demonstrated by cyclic AMP-dependent protein kinase phosphorylation. J Neurochem 71:231–239PubMedCrossRefGoogle Scholar
  42. 42.
    El Kouhen R, Kouhen OM, Law PY et al (1999) The absence of a direct correlation between the loss of [D-Ala2, MePhe4,Gly5-ol]Enkephalin inhibition of adenylyl cyclase activity and agonist-induced mu-opioid receptor phosphorylation. J Biol Chem 274:9207–9215PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang L, Yu Y, Mackin S et al (1996) Differential mu opiate receptor ­phosphorylation and ­desensitization induced by agonists and ­phorbol esters. J Biol Chem 271:11449–11454PubMedCrossRefGoogle Scholar
  44. 44.
    Xiang B, Yu GH, Guo J et al (2001) Heterologous activation of protein kinase C stimulates phosphorylation of delta-opioid receptor at serine 344, resulting in beta-­arrestin- and clathrin-mediated receptor internalization. J Biol Chem 276:4709–4716PubMedCrossRefGoogle Scholar
  45. 45.
    Koch T, Kroslak T, Mayer P et al (1997) Site mutation in the rat mu-opioid receptor demonstrates the involvement of calcium/­calmodulin-dependent protein kinase II in agonist-mediated desensitization. J Neurochem 69:1767–1770PubMedCrossRefGoogle Scholar
  46. 46.
    Lefkowitz RJ (1998) G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J Biol Chem 273:18677–18680PubMedCrossRefGoogle Scholar
  47. 47.
    Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24PubMedGoogle Scholar
  48. 48.
    Hasbi A, Polastron J, Allouche S et al (1998) Desensitization of the delta-opioid receptor correlates with its phosphorylation in SK-N-BE cells: involvement of a G protein-coupled receptor kinase. J Neurochem 70:2129–2138PubMedCrossRefGoogle Scholar
  49. 49.
    Bohn LM, Gainetdinov RR, Lin FT et al (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–723PubMedCrossRefGoogle Scholar
  50. 50.
    McLaughlin JP, Myers LC, Zarek PE et al (2004) Prolonged kappa opioid receptor phosphorylation mediated by G-protein receptor kinase underlies sustained analgesic tolerance. J Biol Chem 279:1810–1818PubMedCrossRefGoogle Scholar
  51. 51.
    Qiu Y, Loh HH and Law PY (2007) Phosphorylation of the delta-opioid receptor regulates its beta-arrestins selectivity and subsequent receptor internalization and adenylyl cyclase desensitization. J Biol Chem 282:22315–22323PubMedCrossRefGoogle Scholar
  52. 52.
    Wang F, Chen X, Zhang X et al (2008) Phosphorylation state of mu-opioid receptor determines the alternative recycling of receptor via Rab4 or Rab11 pathway. Mol Endocrinol 22:1881–1892PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang X, Wang F, Chen X et al (2005) Beta-arrestin1 and beta-arrestin2 are differentially required for phosphorylation-dependent and -independent internalization of delta-opioid receptors. J Neurochem 95:169–178PubMedCrossRefGoogle Scholar
  54. 54.
    Wolf R, Koch T, Schulz S et al (1999) Replacement of threonine 394 by alanine facilitates internalization and resensitization of the rat mu opioid receptor. Mol Pharmacol 55:263–268PubMedGoogle Scholar
  55. 55.
    Qiu Y, Law PY and Loh HH (2003) Mu-opioid receptor desensitization: role of receptor phosphorylation, internalization, and representation. J Biol Chem 278:36733–36739PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang X, Wang F, Chen X et al (2008) Post-endocytic fates of delta-opioid receptor are regulated by GRK2-mediated receptor phosphorylation and distinct beta-arrestin isoforms. J Neurochem 106:781–792PubMedCrossRefGoogle Scholar
  57. 57.
    Wang H, Guang W, Barbier E et al (2007) Mu opioid receptor mutant, T394A, abolishes opioid-mediated adenylyl cyclase superactivation. Neuroreport 18:1969–1973PubMedCrossRefGoogle Scholar
  58. 58.
    Escriba PV, Wedegaertner PB, Goni FM et al (2007) Lipid-protein interactions in GPCR-associated signaling. Biochim Biophys Acta 1768:836–852PubMedCrossRefGoogle Scholar
  59. 59.
    Drisdel RC, Alexander JK, Sayeed A et al (2006) Assays of protein palmitoylation. Methods 40:127–134PubMedCrossRefGoogle Scholar
  60. 60.
    O’Brien PJ and Zatz M (1984) Acylation of bovine rhodopsin by [3H]palmitic acid. J Biol Chem 259:5054–5057PubMedGoogle Scholar
  61. 61.
    Ovchinnikov Yu A, Abdulaev NG and Bogachuk AS (1988) Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Lett 230:1–5PubMedCrossRefGoogle Scholar
  62. 62.
    O’Dowd BF, Hnatowich M, Caron MG et al (1989) Palmitoylation of the human beta 2-adrenergic receptor. Mutation of Cys341 in the carboxyl tail leads to an uncoupled nonpalmitoylated form of the receptor. J Biol Chem 264:7564–7569PubMedGoogle Scholar
  63. 63.
    Chen C, Shahabi V, Xu W et al (1998) Palmitoylation of the rat mu opioid receptor. FEBS Lett 441:148–152PubMedCrossRefGoogle Scholar
  64. 64.
    Petaja-Repo UE, Hogue M, Leskela TT et al (2006) Distinct subcellular localization for constitutive and agonist-modulated palmitoylation of the human delta opioid receptor. J Biol Chem 281:15780–15789PubMedCrossRefGoogle Scholar
  65. 65.
    Probst WC, Snyder LA, Schuster DI et al (1992) Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol 11:1–20PubMedCrossRefGoogle Scholar
  66. 66.
    Qanbar R and Bouvier M (2003) Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther 97:1–33PubMedCrossRefGoogle Scholar
  67. 67.
    Mouillac B, Caron M, Bonin H et al (1992) Agonist-modulated palmitoylation of beta 2-adrenergic receptor in Sf9 cells. J Biol Chem 267:21733–21737PubMedGoogle Scholar
  68. 68.
    Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318: 1258–1265PubMedCrossRefGoogle Scholar
  69. 69.
    Shenoy SK (2007) Seven-transmembrane receptors and ubiquitination. Circ Res 100:1142–1154PubMedCrossRefGoogle Scholar
  70. 70.
    Bonifacino JS and Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447PubMedCrossRefGoogle Scholar
  71. 71.
    Shenoy SK, McDonald PH, Kohout TA et al (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294:1307–1313PubMedCrossRefGoogle Scholar
  72. 72.
    Shenoy SK and Lefkowitz RJ (2003) Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. J Biol Chem 278:14498–14506PubMedCrossRefGoogle Scholar
  73. 73.
    Chaturvedi K, Bandari P, Chinen N et al (2001) Proteasome involvement in agonist-induced down-regulation of mu and delta ­opioid receptors. J Biol Chem 276:12345–12355PubMedCrossRefGoogle Scholar
  74. 74.
    Petaja-Repo UE, Hogue M, Laperriere A et al (2001) Newly synthesized human delta opioid receptors retained in the endoplasmic reticulum are retrotranslocated to the ­cytosol, ­deglycosylated, ubiquitinated, and degraded by the proteasome. J Biol Chem 276:4416–4423PubMedCrossRefGoogle Scholar
  75. 75.
    Li JG, Haines DS and Liu-Chen LY (2008) Agonist-promoted Lys63-linked polyubiquitination of the human kappa-opioid receptor is involved in receptor down-regulation. Mol Pharmacol 73:1319–1330PubMedCrossRefGoogle Scholar
  76. 76.
    Miggin SM, Lawler OA and Kinsella BT (2002) Investigation of a functional requirement for isoprenylation by the human ­prostacyclin receptor. Eur J Biochem 269:1714–1725PubMedCrossRefGoogle Scholar
  77. 77.
    Miggin SM, Lawler OA and Kinsella BT (2003) Palmitoylation of the human prostacyclin receptor. Functional implications of palmitoylation and isoprenylation. J Biol Chem 278:6947–6958PubMedCrossRefGoogle Scholar
  78. 78.
    Muller S, Hoege C, Pyrowolakis G et al (2001) SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell Biol 2:202–210PubMedCrossRefGoogle Scholar
  79. 79.
    Scheschonka A, Tang Z and Betz H (2007) Sumoylation in neurons: nuclear and synaptic roles? Trends Neurosci 30:85–91PubMedCrossRefGoogle Scholar
  80. 80.
    Hay RT (2005) SUMO: a history of modification. Mol Cell 18:1–12PubMedCrossRefGoogle Scholar
  81. 81.
    Tang Z, El Far O, Betz H et al (2005) Pias1 interaction and sumoylation of metabotropic glutamate receptor 8. J Biol Chem 280:38153–38159PubMedCrossRefGoogle Scholar
  82. 82.
    Perroy J, Pontier S, Charest PG et al (2004) Real-time monitoring of ubiquitination in living cells by BRET. Nat Methods 1:203–208PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations