Regulation of the Transcription of G Protein-Coupled Receptor Genes

  • Cheol Kyu HwangEmail author
  • Ping-Yee Law
  • Li-Na Wei
  • Horace H. Loh
Part of the Neuromethods book series (NM, volume 60)


G protein-coupled receptors (GPCRs) participate in a variety of physiological functions and are major targets of pharmaceutical drugs. More than 600 GPCRs have been identified in the human genome. Although GPCRs are expressed in multiple tissues and individual tissues express multiple GPCRs, many have exclusive or increased expression within the central nervous system (CNS). These unique and diverse expression patterns raise fundamental questions as to the molecular mechanisms underlying the tissue/cell-specific distribution of GPCRs as well as the means by which their expression is altered in response to stimuli. Gene expression in mammals involves both transcriptional and posttranscriptional mechanisms. In this chapter, we provide an overview of the transcriptional regulation of GPCRs and discuss both established and emerging techniques to study transcriptional regulation.

Key words

ChIP-on-chip Chromatin immunoprecipitation Electrophoretic mobility shift assay Epigenetic G protein-coupled receptor Gene expression Histone 



Chromatin immunoprecipitation




Dimethyl sulfate


DNA methyltransferase


Dopamine receptor regulating factor


Double-stranded RNA


Electrophoretic mobility shift assay


G protein-coupled receptors


Ligation-mediated polymerase chain reaction


Micrococcal nuclease


μ Opioid receptor


Quantitative PCR


Reciprocal ChIP


RNA interference


Reverse transcription polymerase chain reaction


Small interfering RNAs



This work was supported by NIH Grants DA000564, DA001583, DA011806, K05-DA070554 (HHL), DA011190, DA013926 (LW), and by the A&F Stark Fund of the Minnesota Medical Foundation. We thank Dr. Martin Winer and Mr. Bradley J. Stish for editorial assistance with the manuscript.


  1. 1.
    Vassilatis DK, Hohmann JG, Zeng H et al (2003) The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci USA 100:4903–4908PubMedCrossRefGoogle Scholar
  2. 2.
    Lundstrom K (2009) An overview on GPCRs and drug discovery: structure-based drug design and structural biology on GPCRs. Methods Mol Biol 552:51–66PubMedCrossRefGoogle Scholar
  3. 3.
    Fredriksson R, Lagerstrom MC, Lundin LG et al (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272PubMedCrossRefGoogle Scholar
  4. 4.
    Stevens CW (2009) The evolution of vertebrate opioid receptors. Front Biosci 14:1247–1269PubMedCrossRefGoogle Scholar
  5. 5.
    Lemon B, Tjian R (2000) Orchestrated response: a symphony of transcription factors for gene control. Genes Dev 14:2551–2569PubMedCrossRefGoogle Scholar
  6. 6.
    Hsieh J, Gage FH (2005) Chromatin remodeling in neural development and plasticity. Curr Opin Cell Biol 17:664–671PubMedCrossRefGoogle Scholar
  7. 7.
    Lomvardas S, Thanos D (2002) Opening chromatin. Mol Cell 9:209–211PubMedCrossRefGoogle Scholar
  8. 8.
    Mansour A, Fox CA, Akil H et al (1995) Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci 18:22–29PubMedCrossRefGoogle Scholar
  9. 9.
    Hwang CK, Song KY, Kim CS et al (2009) Epigenetic programming of mu opioid receptor gene in mouse brain is regulated by MeCP2 and Brg1 chromatin remodeling factor. J Cell Mol Med 13:3591–3615.PubMedCrossRefGoogle Scholar
  10. 10.
    Chen HC, Wei LN, Loh HH (1999) Expression of mu-, kappa- and delta-opioid receptors in P19 mouse embryonal carcinoma cells. Neuroscience 92:1143–1155PubMedCrossRefGoogle Scholar
  11. 11.
    Hwang CK, Song KY, Kim CS et al (2007) Evidence of endogenous mu opioid receptor regulation by epigenetic control of the promoters. Mol Cell Biol 27:4720–4736PubMedCrossRefGoogle Scholar
  12. 12.
    Suzuki S, Miyagi T, Chuang TK et al (2000) Morphine upregulates mu opioid receptors of human and monkey lymphocytes. Biochem Biophys Res Commun 279:621–628PubMedCrossRefGoogle Scholar
  13. 13.
    Ruzicka BB, Akil H (1997) The interleukin-1beta-mediated regulation of proenkephalin and opioid receptor messenger RNA in primary astrocyte-enriched cultures. Neuroscience 79:517–524PubMedCrossRefGoogle Scholar
  14. 14.
    Chang SL, Felix B, Jiang Y et al (2001) Actions of endotoxin and morphine. Adv Exp Med Biol 493:187–196PubMedCrossRefGoogle Scholar
  15. 15.
    Azaryan AV, Clock BJ, Rosenberger JG et al (1998) Transient upregulation of mu opioid receptor mRNA levels in nucleus accumbens during chronic cocaine administration. Can J Physiol Pharmacol 76:278–283PubMedCrossRefGoogle Scholar
  16. 16.
    Delfs JM, Yu L, Ellison GD et al (1994) Regulation of mu-opioid receptor mRNA in rat globus pallidus: effects of enkephalin increases induced by short- and long-term haloperidol administration. J Neurochem 63:777–780PubMedCrossRefGoogle Scholar
  17. 17.
    Antequera F (2003) Structure, function and evolution of CpG island promoters. Cell Mol Life Sci 60:1647–1658PubMedCrossRefGoogle Scholar
  18. 18.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705PubMedCrossRefGoogle Scholar
  19. 19.
    Mito Y, Henikoff JG, Henikoff S (2005) Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet 37:1090–1097PubMedCrossRefGoogle Scholar
  20. 20.
    Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12:599–606PubMedCrossRefGoogle Scholar
  21. 21.
    Zegerman P, Canas B, Pappin D et al (2002) Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. J Biol Chem 277:11621–11624PubMedCrossRefGoogle Scholar
  22. 22.
    Lachner M, O’Carroll D, Rea S et al (2001) Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410:116–120PubMedCrossRefGoogle Scholar
  23. 23.
    Fuks F, Hurd PJ, Wolf D et al (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278:4035–4040PubMedCrossRefGoogle Scholar
  24. 24.
    Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedCrossRefGoogle Scholar
  25. 25.
    Mello CC, Conte D, Jr. (2004) Revealing the world of RNA interference. Nature 431:338–342PubMedCrossRefGoogle Scholar
  26. 26.
    Holmquist GP, Ashley T (2006) Chromosome organization and chromatin modification: influence on genome function and evolution. Cytogenet Genome Res 114:96–125PubMedCrossRefGoogle Scholar
  27. 27.
    Smith CL, Hager GL (1997) Transcriptional regulation of mammalian genes in vivo. A tale of two templates. J Biol Chem 272: 27493–27496PubMedCrossRefGoogle Scholar
  28. 28.
    Carey M, Peterson CL, Smale ST (2009) Transcriptional regulation in eukaryotes : concepts, strategies, and techniques, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  29. 29.
    Hu X, Cao S, Loh HH et al (1999) Promoter activity of mouse kappa opioid receptor gene in transgenic mouse. Brain Res Mol Brain Res 69:35–43PubMedCrossRefGoogle Scholar
  30. 30.
    O’Neill LP, Turner BM (1996) Immuno­precipitation of chromatin. Methods Enzymol 274:189–197PubMedCrossRefGoogle Scholar
  31. 31.
    Lee TI, Johnstone SE, Young RA (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1:729–748PubMedCrossRefGoogle Scholar
  32. 32.
    Wei CL, Wu Q, Vega VB et al (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124:207–219PubMedCrossRefGoogle Scholar
  33. 33.
    Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837PubMedCrossRefGoogle Scholar
  34. 34.
    Park SW, Huq MD, Loh HH et al (2005) Retinoic acid-induced chromatin remodeling of mouse kappa opioid receptor gene. J Neurosci 25:3350–3357PubMedCrossRefGoogle Scholar
  35. 35.
    Wei LN (2008) Epigenetic control of the expression of opioid receptor genes. Epigenetics 3:119–121PubMedCrossRefGoogle Scholar
  36. 36.
    Collas P (2009) Chromatin immunoprecipitation assays : methods and protocols, Humana Press, Totowa, New Jersey.CrossRefGoogle Scholar
  37. 37.
    Ren B, Robert F, Wyrick JJ et al (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309PubMedCrossRefGoogle Scholar
  38. 38.
    Sambrook J, Russell DW (2001) Molecular cloning : a laboratory manual, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  39. 39.
    Smirnov D, Im HJ, Loh HH (2001) Delta-opioid receptor gene: effect of Sp1 factor on transcriptional regulation in vivo. Mol Pharmacol 60:331–340PubMedGoogle Scholar
  40. 40.
    Bi J, Hu X, Loh HH et al (2001) Regulation of mouse kappa opioid receptor gene expression by retinoids. J Neurosci 21:1590–1599PubMedGoogle Scholar
  41. 41.
    Pan YX, Xu J, Bolan E et al (2005) Identification of four novel exon 5 splice variants of the mouse mu-opioid receptor gene: functional consequences of C-terminal splicing. Mol Pharmacol 68:866–875PubMedGoogle Scholar
  42. 42.
    Kim SS, Pandey KK, Choi HS et al (2005) Poly(C) binding protein family is a transcription factor in mu-opioid receptor gene expression. Mol Pharmacol 68:729–736PubMedGoogle Scholar
  43. 43.
    Dorak MT (2006) Real-time PCR, Taylor & Francis, New York.Google Scholar
  44. 44.
    Song KY, Hwang CK, Kim CS et al (2007) Translational repression of mouse mu opioid receptor expression via leaky scanning. Nucleic Acids Res 35:1501–1513PubMedCrossRefGoogle Scholar
  45. 45.
    Gilsbach R, Kouta M, Bonisch H et al (2006) Comparison of in vitro and in vivo reference genes for internal standardization of real-time PCR data. Biotechniques 40:173–177PubMedCrossRefGoogle Scholar
  46. 46.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45PubMedCrossRefGoogle Scholar
  47. 47.
    Hwang CK, D’Souza UM, Eisch AJ et al (2001) Dopamine receptor regulating factor, DRRF: a zinc finger transcription factor. Proc Natl Acad Sci USA 98:7558–7563PubMedCrossRefGoogle Scholar
  48. 48.
    Choi HS, Song KY, Hwang CK et al (2008) A proteomics approach for identification of single strand DNA-binding proteins involved in transcriptional regulation of mouse mu opioid receptor gene. Mol Cell Proteomics 7:1517–1529PubMedCrossRefGoogle Scholar
  49. 49.
    Kim CS, Choi HS, Hwang CK et al (2006) Evidence of the neuron-restrictive silencer factor (NRSF) interaction with Sp3 and its synergic repression to the mu opioid receptor (MOR) gene. Nucleic Acids Res 34:6392–6403PubMedCrossRefGoogle Scholar
  50. 50.
    Tost J (2009) DNA methylation : methods and protocols, 2nd ed., Humana Press, Totowa, New Jersey.CrossRefGoogle Scholar
  51. 51.
    Ausubel FM. (2003) Current protocols in molecular biology. Wiley, New York.Google Scholar
  52. 52.
    Lee TI, Rinaldi NJ, Robert F et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804PubMedCrossRefGoogle Scholar
  53. 53.
    Bar-Joseph Z, Gerber GK, Lee TI et al (2003) Computational discovery of gene modules and regulatory networks. Nat Biotechnol 21:1337–1342PubMedCrossRefGoogle Scholar
  54. 54.
    Kirigiti P, Yang YF, Li X et al (2000) Rat beta1-adrenergic receptor regulatory region containing consensus AP-2 elements recognizes novel transactivator proteins. Mol Cell Biol Res Commun 3:181–192PubMedCrossRefGoogle Scholar
  55. 55.
    Tseng YT, Stabila JP, Nguyen TT et al (2001) A novel glucocorticoid regulatory unit mediates the hormone responsiveness of the beta1-adrenergic receptor gene. Mol Cell Endocrinol 181:165–178PubMedCrossRefGoogle Scholar
  56. 56.
    Lee K, Richardson CD, Razik MA et al (1998) Multiple potential regulatory elements in the 5’ flanking region of the human alpha1a-adrenergic receptor. DNA Seq 8:271–276PubMedGoogle Scholar
  57. 57.
    Bahouth SW, Beauchamp MJ, Vu KN (2002) Reciprocal regulation of beta(1)-adrenergic receptor gene transcription by Sp1 and early growth response gene 1: induction of EGR-1 inhibits the expression of the beta(1)-adrenergic receptor gene. Mol Pharmacol 61:379–390PubMedCrossRefGoogle Scholar
  58. 58.
    Malbon CC, Hadcock JR (1988) Evidence that glucocorticoid response elements in the 5’-noncoding region of the hamster beta 2-adrenergic receptor gene are obligate for glucocorticoid regulation of receptor mRNA levels. Biochem Biophys Res Commun 154:676–681PubMedCrossRefGoogle Scholar
  59. 59.
    Ko JL, Loh HH (2005) Poly C binding protein, a single-stranded DNA binding protein, regulates mouse mu-opioid receptor gene expression. J Neurochem 93:749–761PubMedCrossRefGoogle Scholar
  60. 60.
    Hwang CK, Wu X, Wang G et al (2003) Mouse mu opioid receptor distal promoter transcriptional regulation by SOX proteins. J Biol Chem 278:3742–3750PubMedCrossRefGoogle Scholar
  61. 61.
    Kraus J, Borner C, Giannini E et al (2003) The role of nuclear factor kappaB in tumor necrosis factor-regulated transcription of the human mu-opioid receptor gene. Mol Pharmacol 64:876–884PubMedCrossRefGoogle Scholar
  62. 62.
    Hwang CK, Kim CS, Choi HS et al (2004) Transcriptional regulation of mouse mu opioid receptor gene by PU.1. J Biol Chem 279:19764–19774PubMedCrossRefGoogle Scholar
  63. 63.
    Kim CS, Hwang CK, Choi HS et al (2004) Neuron-restrictive silencer factor (NRSF) functions as a repressor in neuronal cells to regulate the mu opioid receptor gene. J Biol Chem 279:46464–46473PubMedCrossRefGoogle Scholar
  64. 64.
    Andria ML, Simon EJ (2001) Identification of a neurorestrictive suppressor element (NRSE) in the human mu-opioid receptor gene. Brain Res Mol Brain Res 91:73–80PubMedCrossRefGoogle Scholar
  65. 65.
    Liu HC, Shen JT, Augustin LB et al (1999) Transcriptional regulation of mouse delta-opioid receptor gene. J Biol Chem 274:23617–23626PubMedCrossRefGoogle Scholar
  66. 66.
    Woltje M, Kraus J, Hollt V (2000) Regulation of mouse delta-opioid receptor gene transcription: involvement of the transcription ­factors AP-1 and AP-2. J Neurochem 74:1355–1362PubMedCrossRefGoogle Scholar
  67. 67.
    Sun P, Loh HH (2003) Transcriptional regulation of mouse delta-opioid receptor gene. Ikaros-2 and upstream stimulatory factor synergize in trans-activating mouse delta-opioid receptor gene in T cells. J Biol Chem 278:2304–2308PubMedCrossRefGoogle Scholar
  68. 68.
    Li J, Park SW, Loh HH et al (2002) Induction of the mouse kappa-opioid receptor gene by retinoic acid in P19 cells. J Biol Chem 277:39967–39972PubMedCrossRefGoogle Scholar
  69. 69.
    Park SW, Li J, Loh HH et al (2002) A novel signaling pathway of nitric oxide on transcriptional regulation of mouse kappa opioid receptor gene. J Neurosci 22:7941–7947PubMedGoogle Scholar
  70. 70.
    Hu X, Bi J, Loh HH et al (2001) An intronic Ikaros-binding element mediates retinoic acid suppression of the kappa opioid receptor gene, accompanied by histone deacetylation on the promoters. J Biol Chem 276:4597–4603PubMedCrossRefGoogle Scholar
  71. 71.
    Minowa MT, Minowa T, Mouradian MM (1993) Activator region analysis of the human D1A dopamine receptor gene. J Biol Chem 268:23544–23551PubMedGoogle Scholar
  72. 72.
    Yang Y, Hwang CK, Junn E et al (2000) ZIC2 and Sp3 repress Sp1-induced activation of the human D1A dopamine receptor gene. J Biol Chem 275:38863–38869PubMedCrossRefGoogle Scholar
  73. 73.
    Lee SH, Mouradian MM (1999) Up-regulation of D1A dopamine receptor gene transcription by estrogen. Mol Cell Endocrinol 156:151–157PubMedCrossRefGoogle Scholar
  74. 74.
    Yajima S, Lee SH, Minowa T et al (1998) Sp family transcription factors regulate expression of rat D2 dopamine receptor gene. DNA Cell Biol 17:471–479PubMedCrossRefGoogle Scholar
  75. 75.
    Bontempi S, Fiorentini C, Busi C et al (2007) Identification and characterization of two nuclear factor-kappaB sites in the regulatory region of the dopamine D2 receptor. Endocrinology 148:2563–2570PubMedCrossRefGoogle Scholar
  76. 76.
    Wang J, Miller JC, Friedhoff AJ (1997) Differential regulation of D2 receptor gene expression by transcription factor AP-1 in cultured cells. J Neurosci Res 50:23–31PubMedCrossRefGoogle Scholar
  77. 77.
    Pepitoni S, Wood IC, Buckley NJ (1997) Structure of the M1 muscarinic acetylcholine receptor gene and its promoter. J Biol Chem 272:17112–17117PubMedCrossRefGoogle Scholar
  78. 78.
    Rosoff ML, Nathanson NM (1998) GATA factor-dependent regulation of cardiac M2 muscarinic acetylcholine gene transcription. J Biol Chem 273:9124–9129PubMedCrossRefGoogle Scholar
  79. 79.
    Laszlo GS, Rosoff ML, Amieux PS et al (2006) Multiple promoter elements required for leukemia inhibitory factor-stimulated M2 muscarinic acetylcholine receptor promoter activity. J Neurochem 98:1302–1315PubMedCrossRefGoogle Scholar
  80. 80.
    Saffen D, Mieda M, Okamura M et al (1999) Control elements of muscarinic receptor gene expression. Life Sci 64:479–486PubMedCrossRefGoogle Scholar
  81. 81.
    Rivkees SA, Chen M, Kulkarni J et al (1999) Characterization of the murine A1 adenosine receptor promoter, potent regulation by GATA-4 and Nkx2.5. J Biol Chem 274:14204–14209PubMedCrossRefGoogle Scholar
  82. 82.
    Ren H, Stiles GL (1998) A single-stranded DNA binding site in the human A1 adenosine receptor gene promoter. Mol Pharmacol 53:43–51PubMedGoogle Scholar
  83. 83.
    Nie Z, Mei Y, Ford M et al (1998) Oxidative stress increases A1 adenosine receptor expression by activating nuclear factor kappa B. Mol Pharmacol 53:663–669PubMedGoogle Scholar
  84. 84.
    Ren H, Stiles GL (1999) Dexamethasone stimulates human A1 adenosine receptor (A1AR) gene expression through multiple regulatory sites in promoter B. Mol Pharmacol 55:309–316PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Cheol Kyu Hwang
    • 1
    Email author
  • Ping-Yee Law
  • Li-Na Wei
  • Horace H. Loh
  1. 1.Department of PharmacologyUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations