Advertisement

Alternative Pre-mRNA Splicing of G Protein-Coupled Receptors

  • Ying-Xian PanEmail author
  • Steven Grinnell
  • Gavril W. Pasternak
Protocol
Part of the Neuromethods book series (NM, volume 60)

Abstract

Alternative pre-mRNA splicing involves editing of a gene to generate a number of different mRNAs and proteins. It provides a mechanism for only 20,000 genes to generate hundreds of thousands of proteins. Like other proteins, it is estimated that 50% of G protein-coupled receptors undergo alternative splicing. While most commonly involving either the N-terminus or C-terminus, some variants have modifications in the interior of the receptor. Alternative splicing generates functionally distinct variants, due to an intrinsic difference in transduction or location. These features are well illustrated by the mu opioid receptor gene, OPRM1, which undergoes extensive alternative splicing.

Key words

Alternative splicing MOR-1 OPRM1 Splice variants Mu opioid receptor Truncated variants 

References

  1. 1.
    Markovic D, Challiss RA (2009) Alternative splicing of G protein-coupled receptors: physiology and pathophysiology. Cell Mol Life Sci 66:3337–3352.PubMedCrossRefGoogle Scholar
  2. 2.
    Sharp PA (1994) Split genes and RNA splicing. Cell 77:805–815.PubMedCrossRefGoogle Scholar
  3. 3.
    Padgett RA, Grabowski PJ, Konarska MM et al (1986) Splicing of messenger RNA precursors. Annu Rev Biochem 55:1119–1150.PubMedCrossRefGoogle Scholar
  4. 4.
    Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336.PubMedCrossRefGoogle Scholar
  5. 5.
    Black DL (1992) Activation of c-src neuron-specific splicing by an unusual RNA element in vivo and in vitro. Cell 69:795–807.PubMedCrossRefGoogle Scholar
  6. 6.
    Chan RC, Black DL (1997) The polypyrimidine tract binding protein binds upstream of neural cell-specific c-src exon N1 to repress the splicing of the intron downstream. Mol Cell Biol 17:4667–4676.PubMedGoogle Scholar
  7. 7.
    Chan RC, Black DL (1997) Conserved intron elements repress splicing of a neuron-specific c-src exon in vitro. Mol Cell Biol 17:2970.Google Scholar
  8. 8.
    Chan RC, Black DL (1995) Conserved intron elements repress splicing of a neuron-specific c-src exon in vitro. Mol Cell Biol 15:6377–6385.PubMedGoogle Scholar
  9. 9.
    Xu R, Teng J, Cooper TA (1993) The cardiac troponin T alternative exon contains a novel purine-rich positive splicing element. Mol Cell Biol 13:3660–3674.PubMedGoogle Scholar
  10. 10.
    Ryan KJ, Cooper TA (1996) Muscle-specific splicing enhancers regulate inclusion of the cardiac troponin T alternative exon in embryonic skeletal muscle. Mol Cell Biol 16:4014–4023.PubMedGoogle Scholar
  11. 11.
    Cooper TA (1998) Muscle-specific splicing of a heterologous exon mediated by a single muscle-specific splicing enhancer from the cardiac troponin T gene. Mol Cell Biol 18:4519–4525.PubMedGoogle Scholar
  12. 12.
    Carstens RP, Wagner EJ, Garcia-Blanco MA (2000) An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein. Mol Cell Biol 20:7388–7400.PubMedCrossRefGoogle Scholar
  13. 13.
    Carstens RP, McKeehan WL, Garcia-Blanco MA (1998) An intronic sequence element mediates both activation and repression of rat fibroblast growth factor receptor 2 pre-mRNA splicing. Mol Cell Biol 18:2205–2217.PubMedGoogle Scholar
  14. 14.
    Carstens RP, Eaton JV, Krigman HR et al (1997) Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) in human prostate cancer. Oncogene 15:3059–3065.PubMedCrossRefGoogle Scholar
  15. 15.
    Fu D, Skryabin BV, Brosius J et al (1995) Molecular cloning and characterization of the mouse dopamine D3 receptor gene: An additional intron and an mRNA variant. DNA Cell Biol 14:485–492.PubMedCrossRefGoogle Scholar
  16. 16.
    Graveley BR (2000) Sorting out the complexity of SR protein functions. RNA 6:1197–1211.PubMedCrossRefGoogle Scholar
  17. 17.
    Hastings ML, Krainer AR (2001) Pre-mRNA splicing in the new millennium. Curr Opin Cell Biol 13:302–309.PubMedCrossRefGoogle Scholar
  18. 18.
    Ladd AN, Nguyen NH, Malhotra K et al (2004) CELF6, a member of the CELF family of RNA-binding proteins, regulates muscle-specific splicing enhancer-dependent alternative splicing. J Biol Chem 279:17756–17764.PubMedCrossRefGoogle Scholar
  19. 19.
    Ladd AN, Charlet N, Cooper TA (2001) The CELF family of RNA binding proteins is implicated in cell-specific and developmentally ­regulated alternative splicing. Mol Cell Biol 21:1285–1296.PubMedCrossRefGoogle Scholar
  20. 20.
    Ladd AN, Taffet G, Hartley C et al (2005) Cardiac tissue-specific repression of CELF activity disrupts alternative splicing and causes cardiomyopathy. Mol Cell Biol 25:6267–6278.PubMedCrossRefGoogle Scholar
  21. 21.
    Jensen KB, Dredge BK, Stefani G et al (2000) Nova-1 regulates neuron-specific alternative splicing and is essential for neuronal viability. Neuron 25:359–371.PubMedCrossRefGoogle Scholar
  22. 22.
    Ule J, Stefani G, Mele A et al (2006) An RNA map predicting Nova-dependent splicing regulation. Nature 444:580–586.PubMedCrossRefGoogle Scholar
  23. 23.
    Ule J, Ule A, Spencer J et al (2005) Nova regulates brain-specific splicing to shape the synapse. Nat Genet 37:844–852.PubMedCrossRefGoogle Scholar
  24. 24.
    Giros B, Sokoloff P, Martres MP et al (1989) Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 342:923–929.PubMedCrossRefGoogle Scholar
  25. 25.
    Monsma FJ, McVittie LD, Gerfen CR et al (1989) Multiple D2 dopamine receptors produced by alternative RNA splicing. Nature 342:926–929.PubMedCrossRefGoogle Scholar
  26. 26.
    Chen Y, Mestek A, Liu J et al (1993) Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol Pharmacol 44:8–12.PubMedGoogle Scholar
  27. 27.
    Eppler CM, Hulmes JD, Wang J-B et al (1993) Purification and partial amino acid sequence of a mu opioid receptor from rat brain. J Biol Chem 268:26447–26451.PubMedGoogle Scholar
  28. 28.
    Thompson RC, Mansour A, Akil H et al (1993) Cloning and pharmacological characterization of a rat mu opioid receptor. Neuron 11:903–913.PubMedCrossRefGoogle Scholar
  29. 29.
    Wang JB, Imai Y, Eppler CM et al (1993) Mu opiate receptor: cDNA cloning and expression. Proc Natl Acad Sci USA 90:10230–10234.PubMedCrossRefGoogle Scholar
  30. 30.
    Pan L, Xu J, Yu R et al (2005) Identification and characterization of six new alternatively spliced variants of the human mu opioid ­receptor gene, OPRM1. Neuroscience 133:209–220.PubMedCrossRefGoogle Scholar
  31. 31.
    Pan Y-X, Xu J, Rossi GC et al (1998) Cloning and expression of a novel splice variant of the mouse mu-opioid receptor (MOR-1) gene. Soc Neurosci Abstr 24:524.Google Scholar
  32. 32.
    Pan Y-X, Xu J, Mahurter L et al (2001) Generation of the mu opioid receptor (MOR-1) protein by three new splice variants of the OPRM1 gene. Proc Natl Acad Sci USA 98:14084–14089.PubMedCrossRefGoogle Scholar
  33. 33.
    Pan YX, Xu J, Bolan EA et al (1999) Identification and characterization of three new alternatively spliced mu opioid receptor isoforms. Mol Pharmacol 56:396–403.PubMedGoogle Scholar
  34. 34.
    Pan YX, Xu J, Mahurter L et al (2003) Identification and characterization of two new human mu opioid receptor splice variants, hMOR-1O and hMOR-1X. Biochem Biophys Res Commun 301:1057–1061.PubMedCrossRefGoogle Scholar
  35. 35.
    Pan YX, Xu J, Bolan E et al (2005) Identification of four novel exon 5 splice variants of the mouse mu-opioid receptor gene: functional consequences of C-terminal splicing. Mol Pharmacol 68:866–875.PubMedGoogle Scholar
  36. 36.
    Pan YX, Xu J, Xu M et al (2009) Involvement of exon 11-associated variants of the mu opioid receptor MOR-1 in heroin, but not morphine, actions. Proc Natl Acad Sci USA 106:4917-4922.PubMedCrossRefGoogle Scholar
  37. 37.
    Pan YX, Xu J, Bolan E et al (2000) Isolation and expression of a novel alternatively spliced mu opioid receptor isoform, MOR-1F. FEBS Lett 466:337–340.PubMedCrossRefGoogle Scholar
  38. 38.
    Pasternak DA, Pan L, Xu J et al (2004) Identification of three new alternatively spliced variants of the rat mu opioid receptor gene: dissociation of affinity and efficacy. J Neurochem 91:881–890.PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang Y, Pan YX, Kolesnikov Y et al (2006) Immunohistochemical labeling of the mu opioid receptor carboxy terminal splice variant mMOR-1B4 in the mouse central nervous system. Brain Res 1099:33–43.PubMedCrossRefGoogle Scholar
  40. 40.
    Doyle GA, Sheng XR, Lin SS et al (2007) Identification of five mouse mu-opioid receptor (MOR) gene (OPRM1) splice variants containing a newly identified alternatively spliced exon. Gene 395:98–107.PubMedCrossRefGoogle Scholar
  41. 41.
    Choi HS, Kim CS, Hwang CK et al (2006) The opioid ligand binding of human mu-opioid receptor is modulated by novel splice variants of the receptor. Biochem Biophys Res Commun 343:1132–1140.PubMedCrossRefGoogle Scholar
  42. 42.
    Kvam TM, Baar C, Rakvag TT et al (2004) Genetic analysis of the murine mu opioid receptor: increased complexity of OPRM1 gene splicing. J Mol Med 82:250–255.PubMedCrossRefGoogle Scholar
  43. 43.
    Gris P, Gauthier J, Cheng P et al (2010) A novel alternatively spliced isoform of the mu-opioid receptor: functional antagonism. Mol Pain 6:33.PubMedCrossRefGoogle Scholar
  44. 44.
    Xu J, Xu M, Hurd YL et al (2009) Isolation and characterization of new exon 11-associated N-terminal splice variants of the human mu opioid receptor gene. J Neurochem 108:962–972.PubMedCrossRefGoogle Scholar
  45. 45.
    Du Y-L, Elliot K, Pan Y-X et al (1997) A splice variant of the mu opioid receptor is present in human SHSY-5Y cells. Soc Neurosci Abstr 23:1206.Google Scholar
  46. 46.
    Bolan EA, Pasternak GW, Pan Y-X (2004) Functional analysis of MOR-1 splice variants of the mu opioid receptor gene, OPRM1. Synapse 51:11–18.PubMedCrossRefGoogle Scholar
  47. 47.
    Atweh SF, Kuhar MJ (1983) Distribution and physiological significance of opioid receptors in the brain. Br Med Bull 39:47–52.PubMedGoogle Scholar
  48. 48.
    Atweh SF, Kuhar MJ (1977) Autoradiographic localization of opiate receptors in rat brain. III. The telencephalon. Brain Res 134:393–405.PubMedCrossRefGoogle Scholar
  49. 49.
    Atweh SF, Kuhar MJ (1977) Autoradiographic localization of opiate receptors in rat brain. I. Spinal cord and lower medulla. Brain Res 124:53–67.PubMedCrossRefGoogle Scholar
  50. 50.
    Atweh SF, Kuhar MJ (1977) Autoradiographic localization of opiate receptors in rat brain. II. The brain stem. Brain Res 129:1–12.PubMedCrossRefGoogle Scholar
  51. 51.
    Arvidsson U, Riedl M, Chakrabarti S et al (1995) Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord. J Neurosci 15:3328–3341.PubMedGoogle Scholar
  52. 52.
    Mansour A, Fox CA, Burke S et al (1994) Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: An in situ hybridization study. J Comp Neurol 350:412–438.PubMedCrossRefGoogle Scholar
  53. 53.
    Mansour A, Fox CA, Burke S et al (1994) Immunohistochemical localization of the mu opioid receptors. Regul Pept 54:179–180.CrossRefGoogle Scholar
  54. 54.
    Abbadie C, Pan Y-X, Drake CT et al (2000) Comparative immunhistochemical distributions of carboxy terminus epitopes from the mu opioid receptor splice variants MOR-1D, MOR-1 and MOR-1C in the mouse and rat central nervous systems. Neuroscience 100:141–153.PubMedCrossRefGoogle Scholar
  55. 55.
    Abbadie C, Pan Y-X, Pasternak GW (2000) Differential distribution in rat brain of mu opioid receptor carboxy terminal splice variants MOR-1C and MOR-1-like immunoreactivity: Evidence for region-specific processing. J Comp Neurol 419:244–256.PubMedCrossRefGoogle Scholar
  56. 56.
    Uhl GR, Childers S, Pasternak GW (1994) An opiate-receptor gene family reunion. Trends Neurosci 17:89–93.PubMedCrossRefGoogle Scholar
  57. 57.
    Rossi G, Pan YX, Cheng J et al (1994) Blockade of morphine analgesia by an antisense oligodeoxynucleotide against the mu receptor. Life Sci 54:L375–L379.CrossRefGoogle Scholar
  58. 58.
    Chen XH, Adams JU, Geller EB et al (1995) An antisense oligodeoxynucleotide to mu-opioid receptors inhibits mu-opioid receptor agonist-induced analgesia in rats. Eur J Pharmacol 275:105–108.PubMedCrossRefGoogle Scholar
  59. 59.
    Khasar SG, Gold MS, Dastmalchi S et al (1996) Selective attenuation of mu-opioid receptor-mediated effects in rat sensory neurons by intrathecal administration of antisense oligodeoxynucleotides. Neurosci Lett 218:17–20.PubMedCrossRefGoogle Scholar
  60. 60.
    Leventhal L, Cole JL, Rossi GC et al (1996) Antisense oligodeoxynucleotides against the MOR-1 clone alter weight and ingestive responses in rats. Brain Res 719:78–84.PubMedCrossRefGoogle Scholar
  61. 61.
    Standifer KM, Chien C-C, Wahlestedt C et al (1994) Selective loss of delta opioid analgesia and binding by antisense oligodeoxynucleotides to a delta opioid receptor. Neuron 12:805–810.PubMedCrossRefGoogle Scholar
  62. 62.
    Rossi GC, Brown GP, Leventhal L et al (1996) Novel receptor mechanisms for heroin and morphine-6 beta-glucuronide analgesia. Neurosci Lett 216:1–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Leventhal L, Stevens LB, Rossi GC et al (1997) Antisense mapping of the MOR-1 opioid receptor clone: modulation of hyperphagia induced by DAMGO. J Pharmacol Exp Ther 282:1402–1407.PubMedGoogle Scholar
  64. 64.
    Rossi GC, Leventhal L, Pan YX et al (1997) Antisense mapping of MOR-1 in rats: distinguishing between morphine and morphine-6beta-glucuronide antinociception. J Pharmacol Exp Ther 281:109–114.PubMedGoogle Scholar
  65. 65.
    Kolesnikov YA, Pan YX, Babey AM et al (1997) Functionally differentiating two neuronal nitric oxide synthase isoforms through antisense mapping: Evidence for opposing NO actions on morphine analgesia and tolerance. Proc Natl Acad Sci USA 94:8220–8225.PubMedCrossRefGoogle Scholar
  66. 66.
    Philippe Sarret, Louis Doré-Savard, Pascal Tétreault, Valérie Bégin-Lavallée, Marc-André Dansereau, and Nicolas Beaudet (2011) Using RNA Interference to Downregulate G Protein-Coupled Receptors. In: Stevens CW (ed) Methods for the Discovery and Characterization of G Protein-Coupled Receptors. Springer, New YorkGoogle Scholar
  67. 67.
    Huang PL, Dawson TM, Bredt DS et al (1993) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75:1273–1286.PubMedCrossRefGoogle Scholar
  68. 68.
    Matthes HWD, Maldonado R, Simonin F et al (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature 383:819–823.PubMedCrossRefGoogle Scholar
  69. 69.
    Sora I, Funada M, Uhl GR (1997) The ­mu-opioid receptor is necessary for [D-Pen2,D- Pen5]enkephalin-induced analgesia. Eur J Pharmacol 324: R1-R2.PubMedCrossRefGoogle Scholar
  70. 70.
    Sora I, Takahashi N, Funada M et al (1997) Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci USA 94:1544–1549.PubMedCrossRefGoogle Scholar
  71. 71.
    Loh HH, Liu HC, Cavalli A et al (1998) Mu opioid receptor knockout in mice: effects on ligand-induced analgesia and morphine lethality. Mol Brain Res 54:321–326.PubMedCrossRefGoogle Scholar
  72. 72.
    Schuller AG, King MA, Zhang J et al (1999) Retention of heroin and morphine-6beta-glucuronide analgesia in a new line of mice lacking exon 1 of MOR-1. Nat Neurosci 2:151–156.PubMedCrossRefGoogle Scholar
  73. 73.
    Folger KR, Wong EA, Wahl G et al (1982) Patterns of integration of DNA microinjected into cultured mammalian cells: evidence for homologous recombination between injected plasmid DNA molecules. Mol Cell Biol 2:1372–1387.PubMedGoogle Scholar
  74. 74.
    Hsiung N, Roginski RS, Henthorn P et al (1982) Introduction and expression of a fetal human globin gene in mouse fibroblasts. Mol Cell Biol 2:401–411.PubMedGoogle Scholar
  75. 75.
    Evans CJ, Weber E, Barchas JD (1981) Isolation and characterization of a-N-acetyl beta-endorphin (1–26) from the rat posterior/intermediate pituitary lobe. Biochem Biophys Res Commun 102:897–904.PubMedCrossRefGoogle Scholar
  76. 76.
    Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638.PubMedCrossRefGoogle Scholar
  77. 77.
    Jordan BA, Devi LA (1999) G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399:697–700.PubMedCrossRefGoogle Scholar
  78. 78.
    Pan Y-X, Bolan E, Pasternak GW (2002) Dimerization of morphine and orphanin FQ/nociceptin receptors: generation of a novel opioid receptor subtype. Biochem Biophys Res Commun 297:659–663.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ying-Xian Pan
    • 1
    Email author
  • Steven Grinnell
  • Gavril W. Pasternak
  1. 1.Molecular Pharmacology and Chemistry ProgramMemorial Sloan-Kettering Cancer CenterNew York CityUSA

Personalised recommendations