Skip to main content

Using RNA Interference to Downregulate G Protein-Coupled Receptors

  • Protocol
  • First Online:
Book cover Methods for the Discovery and Characterization of G Protein-Coupled Receptors

Part of the book series: Neuromethods ((NM,volume 60))

Abstract

Technologies developed to interfere with gene transcripts were developed back in the 1980. However, it was not before the last decade that light was shed on the underlying mechanisms of what is now known as RNA interference. From then, RNAi was propelled to the forefront as a revolutionizing approach for basic research and clinical therapy. In the present chapter, we will present an overview of RNAi and its mechanisms with a focus on GPCRs applied to neuroscience. We will briefly detail the steps to move from the in vitro assessment to the in vivo proof-of-principle to further ensure appropriate clinical transfer. Examples of successful experiments will be given in each section. Advances, drawbacks, and future directions will be discussed with RNAi as an exciting new technology that can be used to treat GPCR-related neuropathologies intractable with commonly-used pharmacological agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davey J (2004) G-protein-coupled receptors: new approaches to maximise the impact of GPCRS in drug discovery. Expert Opin Ther Targets 8:165–170.

    Article  PubMed  Google Scholar 

  2. Owens J (2007) 2006 drug approvals: finding the niche. Nat Rev Drug Discov 6:99–101.

    Article  PubMed  CAS  Google Scholar 

  3. Cazzin C, Ring C J (2009) Recent advances in the manipulation of murine gene expression and its utility for the study of human neurological disease. Biochim Biophys Acta 1802:796–807.

    PubMed  Google Scholar 

  4. Mizuno T, Chou MY, Inouye M (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA 81:1966–1970.

    Article  PubMed  CAS  Google Scholar 

  5. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289.

    Article  PubMed  CAS  Google Scholar 

  6. Rocheleau CE, Downs WD, Lin R et al (1997) Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90:707–716.

    Article  PubMed  CAS  Google Scholar 

  7. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811.

    Article  PubMed  CAS  Google Scholar 

  8. Pasquinelli AE (2002) MicroRNAs: deviants no longer. Trends Genet 18:171–173.

    Article  PubMed  CAS  Google Scholar 

  9. Sepp-Lorenzino L, Ruddy M (2008) Challenges and opportunities for local and ­systemic delivery of siRNA and antisense ­oligonucleotides. Clin Pharmacol Ther 84:628–632.

    Article  PubMed  CAS  Google Scholar 

  10. Martino S, di Girolamo I, Orlacchio A et al (2009) MicroRNA implications across neurodevelopment and neuropathology. J Biomed Biotechnol 2009:654346.

    PubMed  Google Scholar 

  11. Dore-Savard L, Roussy G, Dansereau MA et al (2008) Central delivery of Dicer-substrate siRNA: a direct application for pain research. Mol Ther 16:1331–1339.

    Article  PubMed  CAS  Google Scholar 

  12. Kim D-H, Behlke MA, Rose SD et al (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23:222–226.

    Article  PubMed  CAS  Google Scholar 

  13. Kubo T, Zhelev Z, Bakalova R et al (2007) Enhancement of gene silencing potency and nuclease stability by chemically modified duplex RNA. Nucleic Acids Symp Ser (Oxf), 407–408.

    Google Scholar 

  14. Rose SD, Kim D-H, Amarzguioui M et al (2005) Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic acids research 33:4140–4156.

    Article  PubMed  CAS  Google Scholar 

  15. Wang HW, Noland C, Siridechadilok B et al (2009) Structural insights into RNA processing by the human RISC-loading complex. Nat Struct Mol Biol 16:1148–1153.

    Article  PubMed  CAS  Google Scholar 

  16. Schwarz D, Hutvágner G, Du T et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208.

    Article  PubMed  CAS  Google Scholar 

  17. Snove O, Jr., Rossi J J (2006) Toxicity in mice expressing short hairpin RNAs gives new insight into RNAi. Genome Biol 7, 231.

    PubMed  Google Scholar 

  18. Hutvagner G, Simard MJ, Mello CC et al (2004) Sequence-specific inhibition of small RNA function. PLoS Biol 2:E98.

    Article  PubMed  Google Scholar 

  19. Grimm D, Streetz KL, Jopling CL et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541.

    Article  PubMed  CAS  Google Scholar 

  20. ClinicalTrials.gov. (2010) Information on Clinical Trials and Human Research Studies.

    Google Scholar 

  21. Grunweller A, Wyszko E, Bieber B et al (2003) Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 31:3185–3193.

    Article  PubMed  Google Scholar 

  22. Kretschmer-Kazemi Far R, Sczakiel G (2003) The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res 31:4417–4424.

    Article  PubMed  CAS  Google Scholar 

  23. Bertrand JR, Pottier M, Vekris A et al (2002) Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun 296:1000–1004.

    Article  PubMed  CAS  Google Scholar 

  24. Miyagishi M, Hayashi M, Taira K (2003) Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev 13:1–7.

    Article  PubMed  CAS  Google Scholar 

  25. Tan P H, Yang L C, Ji R R (2009) Therapeutic potential of RNA interference in pain medicine. Open Pain J 2:57–63.

    Article  PubMed  CAS  Google Scholar 

  26. Grimm D, Kay MA (2007) Combinatorial RNAi: a winning strategy for the race against evolving targets? Mol Ther 15:878–888.

    PubMed  CAS  Google Scholar 

  27. Genc S, Koroglu TF, Genc K (2004) RNA interference in neuroscience. Brain Res Mol Brain Res 132:260–270.

    Article  PubMed  CAS  Google Scholar 

  28. Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457:426–433.

    Article  PubMed  CAS  Google Scholar 

  29. Pardridge WM (2007) shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev 59:141–152.

    Article  PubMed  CAS  Google Scholar 

  30. Amarzguioui M, Lundberg P, Cantin E et al (2006) Rational design and in vitro and in vivo delivery of Dicer substrate siRNA. Nat Protoc 1:508–517.

    Article  PubMed  CAS  Google Scholar 

  31. Behlke MA (2008) Chemical modification of siRNAs for in vivo use. Oligonucleotides 18:305–319.

    Article  PubMed  CAS  Google Scholar 

  32. Kurreck J (2009) RNA interference: from basic research to therapeutic applications. Angew Chem Int Ed Engl 48:1378–1398.

    Article  PubMed  CAS  Google Scholar 

  33. John M, Constien R, Akinc A et al (2007) Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature 449:745–747.

    Article  PubMed  CAS  Google Scholar 

  34. Murphy PM, Baggiolini M, Charo IF et al (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176.

    CAS  Google Scholar 

  35. Agrawal L, Maxwell CR, Peters PJ et al (2009) Complexity in human immunodeficiency virus type 1 (HIV-1) co-receptor usage: roles of CCR3 and CCR5 in HIV-1 infection of monocyte-derived macrophages and brain microglia. J Gen Virol 90:710–722.

    Article  PubMed  CAS  Google Scholar 

  36. Bakshi P, Margenthaler E, Laporte V et al (2008) Novel role of CXCR2 in regulation of gamma-secretase activity. ACS Chem Biol 3:777–789.

    Article  PubMed  CAS  Google Scholar 

  37. Chen DL, Ping YF, Yu SC et al (2009) Downregulating FPR restrains xenograft tumors by impairing the angiogenic potential and invasive capability of malignant glioma cells. Biochem Biophys Res Commun 381:448–452.

    Article  PubMed  CAS  Google Scholar 

  38. Yao Y, Wang C, Varshney RR et al (2009) Antisense makes sense in engineered regenerative medicine. Pharm Res 26:263–275.

    Article  PubMed  CAS  Google Scholar 

  39. Lee YS, Choi SL, Lee SH et al (2009) Identification of a serotonin receptor coupled to adenylyl cyclase involved in learning-related heterosynaptic facilitation in Aplysia. Proc Natl Acad Sci USA 106:14634–14639.

    Article  PubMed  CAS  Google Scholar 

  40. Jensen KP, Covault J, Conner TS et al (2009) A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors. Mol Psychiatry 14:381–389.

    Article  PubMed  CAS  Google Scholar 

  41. Nemoto T, Yamauchi N, and Shibasaki T (2009) Novel action of pituitary urocortin 2 in the regulation of expression and secretion of gonadotropins. J Endocrinol 201:105–114.

    Article  PubMed  CAS  Google Scholar 

  42. Loane DJ, Stoica BA, Pajoohesh-Ganji A et al (2009) Activation of metabotropic glutamate receptor 5 modulates microglial reactivity and neurotoxicity by inhibiting NADPH oxidase. J Biol Chem 284:15629–15639.

    Article  PubMed  CAS  Google Scholar 

  43. Belles X (2010) Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annu Rev Entomol 55:111–128.

    Article  PubMed  CAS  Google Scholar 

  44. Dzitoyeva S, Dimitrijevic N, and Manev H (2003) Gamma-aminobutyric acid B receptor 1 mediates behavior-impairing actions of alcohol in Drosophila: adult RNA interference and pharmacological evidence. Proc Natl Acad Sci USA 100:5485–5490.

    Article  PubMed  CAS  Google Scholar 

  45. Draper I, Kurshan P T, McBride E et al (2007) Locomotor activity is regulated by D2-like receptors in Drosophila: an anatomic and functional analysis. Dev Neurobiol 67:378–393.

    Article  PubMed  CAS  Google Scholar 

  46. Hamada A, Miyawaki K, Honda-sumi E et al (2009) Loss-of-function analyses of the fragile X-related and dopamine receptor genes by RNA interference in the cricket Gryllus bimaculatus. Dev Dyn 238:2025–2033.

    Article  PubMed  CAS  Google Scholar 

  47. Mustard JA, Pham PM, Smith BH (2009) Modulation of motor behavior by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee. J Insect Physiol 56:422–430.

    Article  PubMed  Google Scholar 

  48. Isacson R, Kull B, Salmi P et al (2003) Lack of efficacy of ‘naked’ small interfering RNA applied directly to rat brain. Acta Physiologica Scandinavica 179:173–177.

    Article  PubMed  CAS  Google Scholar 

  49. Senn C, Hangartner C, Moes S et al (2005) Central administration of small interfering RNAs in rats: a comparison with antisense oligonucleotides. Eur J Pharmacol 522:30–37.

    Article  PubMed  CAS  Google Scholar 

  50. Dygalo NN, Kalinina TS, Shishkina GT (2008) Neonatal programming of rat behavior by downregulation of alpha2A-adrenoreceptor gene expression in the brain. Ann N Y Acad Sci 1148:409–414.

    Article  PubMed  Google Scholar 

  51. Lasek AW, Janak PH, He L et al (2007) Downregulation of mu opioid receptor by RNA interference in the ventral tegmental area reduces ethanol consumption in mice. Genes Brain Behav 6:728–735.

    Article  PubMed  CAS  Google Scholar 

  52. Dorn G, Patel S, Wotherspoon G et al (2004) siRNA relieves chronic neuropathic pain. Nucleic Acids Res 32:e49.

    Article  PubMed  Google Scholar 

  53. Luo MC, Zhang DQ, Ma SW et al (2005) An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Mol Pain 1:29.

    Article  PubMed  Google Scholar 

  54. Cai YQ, Chen SR, Han HD et al (2009) Role of M2, M3, and M4 muscarinic receptor ­subtypes in the spinal cholinergic control of nociception revealed using siRNA in rats. J Neurochem 111:1000–1010.

    Article  PubMed  CAS  Google Scholar 

  55. Altier C, Dale CS, Kisilevsky AE et al (2007) Differential role of N-type calcium channel splice isoforms in pain. J Neurosci 27:6363–6373.

    Article  PubMed  CAS  Google Scholar 

  56. Howard KA (2009) Delivery of RNA interference therapeutics using polycation-based nanoparticles. Adv Drug Deliv Rev 61:710–720.

    Article  PubMed  CAS  Google Scholar 

  57. Zhang HM, Chen SR, Cai YQ et al (2009) Signaling mechanisms mediating muscarinic enhancement of GABAergic synaptic transmission in the spinal cord. Neuroscience 158:1577–1588.

    Article  PubMed  CAS  Google Scholar 

  58. Today MN (2009) Quark Pharmaceuticals Announces Data Indicating Potential Utility of QPI-1007 for Treatment of Glaucoma. MediLexicon International Ltd.

    Google Scholar 

  59. Heilker R, Wolff M, Tautermann CS et al (2009) G-protein-coupled receptor-focused drug discovery using a target class platform approach. Drug Discov Today 14:231–240.

    Article  PubMed  CAS  Google Scholar 

  60. Lopez-Fraga M, Martinez T, Jimenez A (2009) RNA interference technologies and therapeutics: from basic research to products. BioDrugs 23:305–332.

    Article  PubMed  CAS  Google Scholar 

  61. Miller GG, Voronina TA (2005) (Perspective technologies for drug design). Antibiot Khimioter 50:52–63.

    PubMed  CAS  Google Scholar 

  62. Hoyer D, Thakker DR, Natt F et al (2006) Global down-regulation of gene expression in the brain using RNA interference, with emphasis on monoamine transporters and GPCRs: implications for target characterization in psychiatric and neurological disorders. J Recept Signal Transduct Res 26:527–547.

    Article  PubMed  CAS  Google Scholar 

  63. Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138.

    Article  PubMed  CAS  Google Scholar 

  64. Jones D (2009) Teaming up to tackle RNAi delivery challenge. Nat Rev Drug Discov 8:525–526.

    Article  PubMed  CAS  Google Scholar 

  65. Eguchi A, Dowdy SF (2009) siRNA delivery using peptide transduction domains. Trends Pharmacol Sci 30:341–345.

    Article  PubMed  CAS  Google Scholar 

  66. Boado RJ, Pardridge WM (2009) Comparison of blood-brain barrier transport of glial-derived neurotrophic factor (GDNF) and an IgG-GDNF fusion protein in the rhesus monkey. Drug Metab Dispos 37:2299–2304.

    Article  PubMed  CAS  Google Scholar 

  67. Hong H, Zhang Y, Cai W (2010) In vivo imaging of RNA interference. J Nucl Med 51:169–172.

    Article  PubMed  CAS  Google Scholar 

  68. Ishola TA, Kang J, Qiao J et al (2007) Phosphatidylinositol 3-kinase regulation of gastrin-releasing peptide-induced cell cycle progression in neuroblastoma cells. Biochim Biophys Acta 1770:927–932.

    Article  PubMed  CAS  Google Scholar 

  69. Park MH, Lee YK, Lee YH et al (2009) Chemokines released from astrocytes promote chemokine receptor 5-mediated neuronal cell differentiation. Exp Cell Res 315:2715–2726.

    Article  PubMed  CAS  Google Scholar 

  70. Li H, Yang W, Chen PW et al (2009) Inhibition of chemokine receptor expression on uveal melanomas by CXCR4 siRNA and its effect on uveal melanoma liver metastases. Invest Ophthalmol Vis Sci 50:5522–5528.

    Article  PubMed  Google Scholar 

  71. Liu XS, Chopp M, Santra M et al (2008) Functional response to SDF1 alpha through over-expression of CXCR4 on adult subventricular zone progenitor cells. Brain Res 1226:18–26.

    Article  PubMed  CAS  Google Scholar 

  72. Yu K, Zhuang J, Kaminski JM et al (2007) CXCR4 down-regulation by small interfering RNA inhibits invasion and tubule formation of human retinal microvascular endothelial cells. Biochem Biophys Res Comm 358:990–996.

    Article  PubMed  CAS  Google Scholar 

  73. Mukerji I, Ramkissoon SH, Reddy KK et al (2005) Autocrine proliferation of neuroblastoma cells is partly mediated through neurokinin receptors: relevance to bone marrow metastasis. J Neurooncol 71:91–98.

    Article  PubMed  CAS  Google Scholar 

  74. Fu AL, Yan XB, Sui L (2007) Down-regulation of beta1-adrenoceptors gene expression by short interfering RNA impairs the memory retrieval in the basolateral amygdala of rats. Neurosci Lett 428:77–81.

    Article  PubMed  CAS  Google Scholar 

  75. Huang W, Li MD (2009) Differential allelic expression of dopamine D1 receptor gene (DRD1) is modulated by microRNA miR-504. Biol Psychiatry 65:702–705.

    Article  PubMed  CAS  Google Scholar 

  76. Pshenichkin S, Dolinska M, Klauzinska M et al (2008) Dual neurotoxic and neuroprotective role of metabotropic glutamate receptor 1 in conditions of trophic deprivation - possible role as a dependence receptor. Neuropharmacology 55:500–508.

    Article  PubMed  CAS  Google Scholar 

  77. Lee HY, Li SP, Park MS et al (2007) Ethanol’s effect on intracellular signal pathways in prenatal rat cortical neurons is GABA-B1 dependent. Synapse 61:622–628.

    Article  PubMed  CAS  Google Scholar 

  78. Naseer MI, Lee HY, Ullah N et al (2010) Ethanol and PTZ effects on siRNA-mediated GABA-B1 receptor: down regulation of intracellular signaling pathway in prenatal rat cortical and hippocampal neurons. Synapse 64:181–190.

    Article  PubMed  CAS  Google Scholar 

  79. Chen Y, Chen H, Hoffmann A et al (2006) Adenovirus-mediated small-interference RNA for in vivo silencing of angiotensin AT1a receptors in mouse brain. Hypertension 47:230–237.

    Article  PubMed  CAS  Google Scholar 

  80. Lin Z, Chen Y, Zhang W et al (2008) RNA interference shows interactions between mouse brainstem angiotensin AT1 receptors and angiotensin-converting enzyme 2. Exp Physiol 93:676–684.

    Article  PubMed  CAS  Google Scholar 

  81. Bahi A, Boyer F, Bussard G et al (2005) Silencing dopamine D3-receptors in the nucleus accumbens shell in vivo induces changes in cocaine-induced hyperlocomotion. Eur J Neurosci 21:3415–3426.

    Article  PubMed  Google Scholar 

  82. Ignell R, Root CM, Birse RT et al (2009) Presynaptic peptidergic modulation of olfactory receptor neurons in Drosophila. Proc Natl Acad Sci USA 106:13070–13075.

    Article  PubMed  CAS  Google Scholar 

  83. Farooqui T, Vaessin H, Smith BH (2004) Octopamine receptors in the honeybee (Apis mellifera) brain and their disruption by RNA-mediated interference. J Insect Physiol 50:701–713.

    Article  PubMed  CAS  Google Scholar 

  84. Carre-Pierrat M, Baillie D, Johnsen R et al (2006) Characterization of the Caenorhabditis elegans G protein-coupled serotonin receptors. Invert Neurosci 6:189–205.

    Article  PubMed  CAS  Google Scholar 

  85. Jensen D, Zhang Z, Flynn FW (2008) Trafficking of tachykinin neurokinin 3 receptor to nuclei of neurons in the paraventricular nucleus of the hypothalamus following osmotic challenge. Neuroscience 155:308–316.

    Article  PubMed  CAS  Google Scholar 

  86. Dimitrijevic N, Dzitoyeva S, Satta R et al (2005) Drosophila GABA(B) receptors are involved in behavioral effects of gamma-hydroxybutyric acid (GHB). Eur J Pharmacol 519:246–252.

    Article  PubMed  CAS  Google Scholar 

  87. Dzitoyeva S, Gutnov A, Imbesi M et al (2005) Developmental role of GABA-B(1) receptors in Drosophila. Brain Res Dev Brain Res 158:111–114.

    Article  PubMed  CAS  Google Scholar 

  88. Fendt M, Schmid S, Thakker DR et al (2008) mGluR7 facilitates extinction of aversive memories and controls amygdala plasticity. Mol Psychiatry 13:970–979.

    Article  PubMed  CAS  Google Scholar 

  89. Thorne N, Bray S, Amrein H (2005) Function and expression of the Drosophila gr genes in the perception of sweet, bitter and pheromone compounds. Chem Senses 30 Suppl 1:i270–272.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Beaudet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sarret, P., Doré-Savard, L., Tétreault, P., Bégin-Lavallée, V., Dansereau, MA., Beaudet, N. (2011). Using RNA Interference to Downregulate G Protein-Coupled Receptors. In: Stevens, C. (eds) Methods for the Discovery and Characterization of G Protein-Coupled Receptors. Neuromethods, vol 60. Humana Press. https://doi.org/10.1007/978-1-61779-179-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-179-6_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-178-9

  • Online ISBN: 978-1-61779-179-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics