Advertisement

Using RNA Interference to Downregulate G Protein-Coupled Receptors

  • Philippe Sarret
  • Louis Doré-Savard
  • Pascal Tétreault
  • Valérie Bégin-Lavallée
  • Marc-André Dansereau
  • Nicolas BeaudetEmail author
Protocol
Part of the Neuromethods book series (NM, volume 60)

Abstract

Technologies developed to interfere with gene transcripts were developed back in the 1980. However, it was not before the last decade that light was shed on the underlying mechanisms of what is now known as RNA interference. From then, RNAi was propelled to the forefront as a revolutionizing approach for basic research and clinical therapy. In the present chapter, we will present an overview of RNAi and its mechanisms with a focus on GPCRs applied to neuroscience. We will briefly detail the steps to move from the in vitro assessment to the in vivo proof-of-principle to further ensure appropriate clinical transfer. Examples of successful experiments will be given in each section. Advances, drawbacks, and future directions will be discussed with RNAi as an exciting new technology that can be used to treat GPCR-related neuropathologies intractable with commonly-used pharmacological agents.

Key words

siRNA shRNA DsiRNA ODN Clinical trials Silencing 

References

  1. 1.
    Davey J (2004) G-protein-coupled receptors: new approaches to maximise the impact of GPCRS in drug discovery. Expert Opin Ther Targets 8:165–170.PubMedCrossRefGoogle Scholar
  2. 2.
    Owens J (2007) 2006 drug approvals: finding the niche. Nat Rev Drug Discov 6:99–101.PubMedCrossRefGoogle Scholar
  3. 3.
    Cazzin C, Ring C J (2009) Recent advances in the manipulation of murine gene expression and its utility for the study of human neurological disease. Biochim Biophys Acta 1802:796–807.PubMedGoogle Scholar
  4. 4.
    Mizuno T, Chou MY, Inouye M (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA 81:1966–1970.PubMedCrossRefGoogle Scholar
  5. 5.
    Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289.PubMedCrossRefGoogle Scholar
  6. 6.
    Rocheleau CE, Downs WD, Lin R et al (1997) Wnt signaling and an APC-related gene specify endoderm in early C. elegans embryos. Cell 90:707–716.PubMedCrossRefGoogle Scholar
  7. 7.
    Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811.PubMedCrossRefGoogle Scholar
  8. 8.
    Pasquinelli AE (2002) MicroRNAs: deviants no longer. Trends Genet 18:171–173.PubMedCrossRefGoogle Scholar
  9. 9.
    Sepp-Lorenzino L, Ruddy M (2008) Challenges and opportunities for local and ­systemic delivery of siRNA and antisense ­oligonucleotides. Clin Pharmacol Ther 84:628–632.PubMedCrossRefGoogle Scholar
  10. 10.
    Martino S, di Girolamo I, Orlacchio A et al (2009) MicroRNA implications across neurodevelopment and neuropathology. J Biomed Biotechnol 2009:654346.PubMedGoogle Scholar
  11. 11.
    Dore-Savard L, Roussy G, Dansereau MA et al (2008) Central delivery of Dicer-substrate siRNA: a direct application for pain research. Mol Ther 16:1331–1339.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim D-H, Behlke MA, Rose SD et al (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23:222–226.PubMedCrossRefGoogle Scholar
  13. 13.
    Kubo T, Zhelev Z, Bakalova R et al (2007) Enhancement of gene silencing potency and nuclease stability by chemically modified duplex RNA. Nucleic Acids Symp Ser (Oxf), 407–408.Google Scholar
  14. 14.
    Rose SD, Kim D-H, Amarzguioui M et al (2005) Functional polarity is introduced by Dicer processing of short substrate RNAs. Nucleic acids research 33:4140–4156.PubMedCrossRefGoogle Scholar
  15. 15.
    Wang HW, Noland C, Siridechadilok B et al (2009) Structural insights into RNA processing by the human RISC-loading complex. Nat Struct Mol Biol 16:1148–1153.PubMedCrossRefGoogle Scholar
  16. 16.
    Schwarz D, Hutvágner G, Du T et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208.PubMedCrossRefGoogle Scholar
  17. 17.
    Snove O, Jr., Rossi J J (2006) Toxicity in mice expressing short hairpin RNAs gives new insight into RNAi. Genome Biol 7, 231.PubMedGoogle Scholar
  18. 18.
    Hutvagner G, Simard MJ, Mello CC et al (2004) Sequence-specific inhibition of small RNA function. PLoS Biol 2:E98.PubMedCrossRefGoogle Scholar
  19. 19.
    Grimm D, Streetz KL, Jopling CL et al (2006) Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441:537–541.PubMedCrossRefGoogle Scholar
  20. 20.
    ClinicalTrials.gov. (2010) Information on Clinical Trials and Human Research Studies.Google Scholar
  21. 21.
    Grunweller A, Wyszko E, Bieber B et al (2003) Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 31:3185–3193.PubMedCrossRefGoogle Scholar
  22. 22.
    Kretschmer-Kazemi Far R, Sczakiel G (2003) The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res 31:4417–4424.PubMedCrossRefGoogle Scholar
  23. 23.
    Bertrand JR, Pottier M, Vekris A et al (2002) Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun 296:1000–1004.PubMedCrossRefGoogle Scholar
  24. 24.
    Miyagishi M, Hayashi M, Taira K (2003) Comparison of the suppressive effects of antisense oligonucleotides and siRNAs directed against the same targets in mammalian cells. Antisense Nucleic Acid Drug Dev 13:1–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Tan P H, Yang L C, Ji R R (2009) Therapeutic potential of RNA interference in pain medicine. Open Pain J 2:57–63.PubMedCrossRefGoogle Scholar
  26. 26.
    Grimm D, Kay MA (2007) Combinatorial RNAi: a winning strategy for the race against evolving targets? Mol Ther 15:878–888.PubMedGoogle Scholar
  27. 27.
    Genc S, Koroglu TF, Genc K (2004) RNA interference in neuroscience. Brain Res Mol Brain Res 132:260–270.PubMedCrossRefGoogle Scholar
  28. 28.
    Castanotto D, Rossi JJ (2009) The promises and pitfalls of RNA-interference-based therapeutics. Nature 457:426–433.PubMedCrossRefGoogle Scholar
  29. 29.
    Pardridge WM (2007) shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev 59:141–152.PubMedCrossRefGoogle Scholar
  30. 30.
    Amarzguioui M, Lundberg P, Cantin E et al (2006) Rational design and in vitro and in vivo delivery of Dicer substrate siRNA. Nat Protoc 1:508–517.PubMedCrossRefGoogle Scholar
  31. 31.
    Behlke MA (2008) Chemical modification of siRNAs for in vivo use. Oligonucleotides 18:305–319.PubMedCrossRefGoogle Scholar
  32. 32.
    Kurreck J (2009) RNA interference: from basic research to therapeutic applications. Angew Chem Int Ed Engl 48:1378–1398.PubMedCrossRefGoogle Scholar
  33. 33.
    John M, Constien R, Akinc A et al (2007) Effective RNAi-mediated gene silencing without interruption of the endogenous microRNA pathway. Nature 449:745–747.PubMedCrossRefGoogle Scholar
  34. 34.
    Murphy PM, Baggiolini M, Charo IF et al (2000) International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52:145–176.Google Scholar
  35. 35.
    Agrawal L, Maxwell CR, Peters PJ et al (2009) Complexity in human immunodeficiency virus type 1 (HIV-1) co-receptor usage: roles of CCR3 and CCR5 in HIV-1 infection of monocyte-derived macrophages and brain microglia. J Gen Virol 90:710–722.PubMedCrossRefGoogle Scholar
  36. 36.
    Bakshi P, Margenthaler E, Laporte V et al (2008) Novel role of CXCR2 in regulation of gamma-secretase activity. ACS Chem Biol 3:777–789.PubMedCrossRefGoogle Scholar
  37. 37.
    Chen DL, Ping YF, Yu SC et al (2009) Downregulating FPR restrains xenograft tumors by impairing the angiogenic potential and invasive capability of malignant glioma cells. Biochem Biophys Res Commun 381:448–452.PubMedCrossRefGoogle Scholar
  38. 38.
    Yao Y, Wang C, Varshney RR et al (2009) Antisense makes sense in engineered regenerative medicine. Pharm Res 26:263–275.PubMedCrossRefGoogle Scholar
  39. 39.
    Lee YS, Choi SL, Lee SH et al (2009) Identification of a serotonin receptor coupled to adenylyl cyclase involved in learning-related heterosynaptic facilitation in Aplysia. Proc Natl Acad Sci USA 106:14634–14639.PubMedCrossRefGoogle Scholar
  40. 40.
    Jensen KP, Covault J, Conner TS et al (2009) A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors. Mol Psychiatry 14:381–389.PubMedCrossRefGoogle Scholar
  41. 41.
    Nemoto T, Yamauchi N, and Shibasaki T (2009) Novel action of pituitary urocortin 2 in the regulation of expression and secretion of gonadotropins. J Endocrinol 201:105–114.PubMedCrossRefGoogle Scholar
  42. 42.
    Loane DJ, Stoica BA, Pajoohesh-Ganji A et al (2009) Activation of metabotropic glutamate receptor 5 modulates microglial reactivity and neurotoxicity by inhibiting NADPH oxidase. J Biol Chem 284:15629–15639.PubMedCrossRefGoogle Scholar
  43. 43.
    Belles X (2010) Beyond Drosophila: RNAi in vivo and functional genomics in insects. Annu Rev Entomol 55:111–128.PubMedCrossRefGoogle Scholar
  44. 44.
    Dzitoyeva S, Dimitrijevic N, and Manev H (2003) Gamma-aminobutyric acid B receptor 1 mediates behavior-impairing actions of alcohol in Drosophila: adult RNA interference and pharmacological evidence. Proc Natl Acad Sci USA 100:5485–5490.PubMedCrossRefGoogle Scholar
  45. 45.
    Draper I, Kurshan P T, McBride E et al (2007) Locomotor activity is regulated by D2-like receptors in Drosophila: an anatomic and functional analysis. Dev Neurobiol 67:378–393.PubMedCrossRefGoogle Scholar
  46. 46.
    Hamada A, Miyawaki K, Honda-sumi E et al (2009) Loss-of-function analyses of the fragile X-related and dopamine receptor genes by RNA interference in the cricket Gryllus bimaculatus. Dev Dyn 238:2025–2033.PubMedCrossRefGoogle Scholar
  47. 47.
    Mustard JA, Pham PM, Smith BH (2009) Modulation of motor behavior by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee. J Insect Physiol 56:422–430.PubMedCrossRefGoogle Scholar
  48. 48.
    Isacson R, Kull B, Salmi P et al (2003) Lack of efficacy of ‘naked’ small interfering RNA applied directly to rat brain. Acta Physiologica Scandinavica 179:173–177.PubMedCrossRefGoogle Scholar
  49. 49.
    Senn C, Hangartner C, Moes S et al (2005) Central administration of small interfering RNAs in rats: a comparison with antisense oligonucleotides. Eur J Pharmacol 522:30–37.PubMedCrossRefGoogle Scholar
  50. 50.
    Dygalo NN, Kalinina TS, Shishkina GT (2008) Neonatal programming of rat behavior by downregulation of alpha2A-adrenoreceptor gene expression in the brain. Ann N Y Acad Sci 1148:409–414.PubMedCrossRefGoogle Scholar
  51. 51.
    Lasek AW, Janak PH, He L et al (2007) Downregulation of mu opioid receptor by RNA interference in the ventral tegmental area reduces ethanol consumption in mice. Genes Brain Behav 6:728–735.PubMedCrossRefGoogle Scholar
  52. 52.
    Dorn G, Patel S, Wotherspoon G et al (2004) siRNA relieves chronic neuropathic pain. Nucleic Acids Res 32:e49.PubMedCrossRefGoogle Scholar
  53. 53.
    Luo MC, Zhang DQ, Ma SW et al (2005) An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Mol Pain 1:29.PubMedCrossRefGoogle Scholar
  54. 54.
    Cai YQ, Chen SR, Han HD et al (2009) Role of M2, M3, and M4 muscarinic receptor ­subtypes in the spinal cholinergic control of nociception revealed using siRNA in rats. J Neurochem 111:1000–1010.PubMedCrossRefGoogle Scholar
  55. 55.
    Altier C, Dale CS, Kisilevsky AE et al (2007) Differential role of N-type calcium channel splice isoforms in pain. J Neurosci 27:6363–6373.PubMedCrossRefGoogle Scholar
  56. 56.
    Howard KA (2009) Delivery of RNA interference therapeutics using polycation-based nanoparticles. Adv Drug Deliv Rev 61:710–720.PubMedCrossRefGoogle Scholar
  57. 57.
    Zhang HM, Chen SR, Cai YQ et al (2009) Signaling mechanisms mediating muscarinic enhancement of GABAergic synaptic transmission in the spinal cord. Neuroscience 158:1577–1588.PubMedCrossRefGoogle Scholar
  58. 58.
    Today MN (2009) Quark Pharmaceuticals Announces Data Indicating Potential Utility of QPI-1007 for Treatment of Glaucoma. MediLexicon International Ltd.Google Scholar
  59. 59.
    Heilker R, Wolff M, Tautermann CS et al (2009) G-protein-coupled receptor-focused drug discovery using a target class platform approach. Drug Discov Today 14:231–240.PubMedCrossRefGoogle Scholar
  60. 60.
    Lopez-Fraga M, Martinez T, Jimenez A (2009) RNA interference technologies and therapeutics: from basic research to products. BioDrugs 23:305–332.PubMedCrossRefGoogle Scholar
  61. 61.
    Miller GG, Voronina TA (2005) (Perspective technologies for drug design). Antibiot Khimioter 50:52–63.PubMedGoogle Scholar
  62. 62.
    Hoyer D, Thakker DR, Natt F et al (2006) Global down-regulation of gene expression in the brain using RNA interference, with emphasis on monoamine transporters and GPCRs: implications for target characterization in psychiatric and neurological disorders. J Recept Signal Transduct Res 26:527–547.PubMedCrossRefGoogle Scholar
  63. 63.
    Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138.PubMedCrossRefGoogle Scholar
  64. 64.
    Jones D (2009) Teaming up to tackle RNAi delivery challenge. Nat Rev Drug Discov 8:525–526.PubMedCrossRefGoogle Scholar
  65. 65.
    Eguchi A, Dowdy SF (2009) siRNA delivery using peptide transduction domains. Trends Pharmacol Sci 30:341–345.PubMedCrossRefGoogle Scholar
  66. 66.
    Boado RJ, Pardridge WM (2009) Comparison of blood-brain barrier transport of glial-derived neurotrophic factor (GDNF) and an IgG-GDNF fusion protein in the rhesus monkey. Drug Metab Dispos 37:2299–2304.PubMedCrossRefGoogle Scholar
  67. 67.
    Hong H, Zhang Y, Cai W (2010) In vivo imaging of RNA interference. J Nucl Med 51:169–172.PubMedCrossRefGoogle Scholar
  68. 68.
    Ishola TA, Kang J, Qiao J et al (2007) Phosphatidylinositol 3-kinase regulation of gastrin-releasing peptide-induced cell cycle progression in neuroblastoma cells. Biochim Biophys Acta 1770:927–932.PubMedCrossRefGoogle Scholar
  69. 69.
    Park MH, Lee YK, Lee YH et al (2009) Chemokines released from astrocytes promote chemokine receptor 5-mediated neuronal cell differentiation. Exp Cell Res 315:2715–2726.PubMedCrossRefGoogle Scholar
  70. 70.
    Li H, Yang W, Chen PW et al (2009) Inhibition of chemokine receptor expression on uveal melanomas by CXCR4 siRNA and its effect on uveal melanoma liver metastases. Invest Ophthalmol Vis Sci 50:5522–5528.PubMedCrossRefGoogle Scholar
  71. 71.
    Liu XS, Chopp M, Santra M et al (2008) Functional response to SDF1 alpha through over-expression of CXCR4 on adult subventricular zone progenitor cells. Brain Res 1226:18–26.PubMedCrossRefGoogle Scholar
  72. 72.
    Yu K, Zhuang J, Kaminski JM et al (2007) CXCR4 down-regulation by small interfering RNA inhibits invasion and tubule formation of human retinal microvascular endothelial cells. Biochem Biophys Res Comm 358:990–996.PubMedCrossRefGoogle Scholar
  73. 73.
    Mukerji I, Ramkissoon SH, Reddy KK et al (2005) Autocrine proliferation of neuroblastoma cells is partly mediated through neurokinin receptors: relevance to bone marrow metastasis. J Neurooncol 71:91–98.PubMedCrossRefGoogle Scholar
  74. 74.
    Fu AL, Yan XB, Sui L (2007) Down-regulation of beta1-adrenoceptors gene expression by short interfering RNA impairs the memory retrieval in the basolateral amygdala of rats. Neurosci Lett 428:77–81.PubMedCrossRefGoogle Scholar
  75. 75.
    Huang W, Li MD (2009) Differential allelic expression of dopamine D1 receptor gene (DRD1) is modulated by microRNA miR-504. Biol Psychiatry 65:702–705.PubMedCrossRefGoogle Scholar
  76. 76.
    Pshenichkin S, Dolinska M, Klauzinska M et al (2008) Dual neurotoxic and neuroprotective role of metabotropic glutamate receptor 1 in conditions of trophic deprivation - possible role as a dependence receptor. Neuropharmacology 55:500–508.PubMedCrossRefGoogle Scholar
  77. 77.
    Lee HY, Li SP, Park MS et al (2007) Ethanol’s effect on intracellular signal pathways in prenatal rat cortical neurons is GABA-B1 dependent. Synapse 61:622–628.PubMedCrossRefGoogle Scholar
  78. 78.
    Naseer MI, Lee HY, Ullah N et al (2010) Ethanol and PTZ effects on siRNA-mediated GABA-B1 receptor: down regulation of intracellular signaling pathway in prenatal rat cortical and hippocampal neurons. Synapse 64:181–190.PubMedCrossRefGoogle Scholar
  79. 79.
    Chen Y, Chen H, Hoffmann A et al (2006) Adenovirus-mediated small-interference RNA for in vivo silencing of angiotensin AT1a receptors in mouse brain. Hypertension 47:230–237.PubMedCrossRefGoogle Scholar
  80. 80.
    Lin Z, Chen Y, Zhang W et al (2008) RNA interference shows interactions between mouse brainstem angiotensin AT1 receptors and angiotensin-converting enzyme 2. Exp Physiol 93:676–684.PubMedCrossRefGoogle Scholar
  81. 81.
    Bahi A, Boyer F, Bussard G et al (2005) Silencing dopamine D3-receptors in the nucleus accumbens shell in vivo induces changes in cocaine-induced hyperlocomotion. Eur J Neurosci 21:3415–3426.PubMedCrossRefGoogle Scholar
  82. 82.
    Ignell R, Root CM, Birse RT et al (2009) Presynaptic peptidergic modulation of olfactory receptor neurons in Drosophila. Proc Natl Acad Sci USA 106:13070–13075.PubMedCrossRefGoogle Scholar
  83. 83.
    Farooqui T, Vaessin H, Smith BH (2004) Octopamine receptors in the honeybee (Apis mellifera) brain and their disruption by RNA-mediated interference. J Insect Physiol 50:701–713.PubMedCrossRefGoogle Scholar
  84. 84.
    Carre-Pierrat M, Baillie D, Johnsen R et al (2006) Characterization of the Caenorhabditis elegans G protein-coupled serotonin receptors. Invert Neurosci 6:189–205.PubMedCrossRefGoogle Scholar
  85. 85.
    Jensen D, Zhang Z, Flynn FW (2008) Trafficking of tachykinin neurokinin 3 receptor to nuclei of neurons in the paraventricular nucleus of the hypothalamus following osmotic challenge. Neuroscience 155:308–316.PubMedCrossRefGoogle Scholar
  86. 86.
    Dimitrijevic N, Dzitoyeva S, Satta R et al (2005) Drosophila GABA(B) receptors are involved in behavioral effects of gamma-hydroxybutyric acid (GHB). Eur J Pharmacol 519:246–252.PubMedCrossRefGoogle Scholar
  87. 87.
    Dzitoyeva S, Gutnov A, Imbesi M et al (2005) Developmental role of GABA-B(1) receptors in Drosophila. Brain Res Dev Brain Res 158:111–114.PubMedCrossRefGoogle Scholar
  88. 88.
    Fendt M, Schmid S, Thakker DR et al (2008) mGluR7 facilitates extinction of aversive memories and controls amygdala plasticity. Mol Psychiatry 13:970–979.PubMedCrossRefGoogle Scholar
  89. 89.
    Thorne N, Bray S, Amrein H (2005) Function and expression of the Drosophila gr genes in the perception of sweet, bitter and pheromone compounds. Chem Senses 30 Suppl 1:i270–272.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Philippe Sarret
  • Louis Doré-Savard
  • Pascal Tétreault
  • Valérie Bégin-Lavallée
  • Marc-André Dansereau
  • Nicolas Beaudet
    • 1
    Email author
  1. 1.Department of Physiology and Biophysics, Centre des Neurosciences de SherbrookeUniversité de SherbrookeSherbrookeCanada

Personalised recommendations