Novel Assay Technologies for the Discovery of G Protein-Coupled Receptor Drugs

  • Elisa Alvarez-Curto
  • Richard J. Ward
  • Graeme MilliganEmail author
Part of the Neuromethods book series (NM, volume 60)


The development of new therapeutic drugs acting at G protein-coupled receptors (GPCRs) whose ligand specificity is known is of great importance to the pharmaceutical industry and to the population at large. It is also vital that surrogate ligands can be identified for GPCRs at which the endogenous ligand(s) remain unknown so that their potential as drug targets can be assessed. It is against this background that we consider a selection of technologies that are emerging to meet these challenges.

Key words

Orphan GPCR Protein complementation Cell-based assay Homogeneous Label-free assay Fluorescent ligand High-throughput screening 


  1. 1.
    Mayr LM, Bojanic D (2009) Novel trends in high-throughput screening. Curr Opin Pharmacol 9:580–588.PubMedCrossRefGoogle Scholar
  2. 2.
    Peters MF, Knappenberger KS, Wilkins D et al (2007) Evaluation of cellular dielectric spectroscopy, a whole-cell, label-free technology for drug discovery on Gi-coupled GPCRs. J Biomol Screen 12:312–319.PubMedCrossRefGoogle Scholar
  3. 3.
    Peters MF, Scott CW (2009) Evaluating cellular impedance assays for detection of GPCR pleiotropic signaling and functional selectivity. J Biomol Screen 14:246–255.PubMedCrossRefGoogle Scholar
  4. 4.
    Antony J, Kellershohn K, Mohr-Andra M et al (2009) Dualsteric GPCR targeting: a novel route to binding and signaling pathway selectivity. FASEB J 23:442–450.PubMedCrossRefGoogle Scholar
  5. 5.
    Kebig A, Kostenis E, Mohr K et al (2009) An optical dynamic mass redistribution assay reveals biased signaling of dualsteric GPCR activators. J Recept Signal Transduct Res 29:140–145.PubMedCrossRefGoogle Scholar
  6. 6.
    Lee T, Schwandner R, Swaminath G et al (2008) Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2. Mol Pharmacol 74:1599–1609.PubMedCrossRefGoogle Scholar
  7. 7.
    Shemesh R, Toporik A, Levine Z et al (2008) Discovery and validation of novel peptide agonists for G-protein-coupled receptors. J Biol Chem 283:34643–34649.PubMedCrossRefGoogle Scholar
  8. 8.
    McLoughlin D, Bertelli F, Williams C (2007) The A, B, Cs of G-protein-coupled receptor pharmacology in assay development for HTS. Expert Opin Drug Discov 2:603–619.CrossRefGoogle Scholar
  9. 9.
    Gossman DG, Zhao HB (2008) Hemichannel-mediated inositol 1,4,5-trisphosphate (IP3) release in the cochlea: a novel mechanism of IP3 intercellular signalling. Cell Commun Adhes 15:305–315.PubMedCrossRefGoogle Scholar
  10. 10.
    Trinquet E, Fink M, Bazin H et al (2006) D-myo-inositol 1-phosphate as a surrogate of D-myo-inositol 1,4,5-tris phosphate to monitor G protein-coupled receptor activation. Anal Biochem 358:126–135.PubMedCrossRefGoogle Scholar
  11. 11.
    Ayoub MA, Maurel D, Binet V et al (2007) Real-time analysis of agonist-induced activation of protease-activated receptor 1/Galphai1 protein complex measured by bioluminescence resonance energy transfer in living cells. Mol Pharmacol 71:1329–1340.PubMedCrossRefGoogle Scholar
  12. 12.
    Violin JD, Lefkowitz RJ (2007) Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci 28:416–422.PubMedCrossRefGoogle Scholar
  13. 13.
    DeWire SM, Ahn S, Lefkowitz RJ et al (2007) Beta-arrestins and cell signalling. Ann Rev Physiol 69:483–510.CrossRefGoogle Scholar
  14. 14.
    Chen W, Hu LA, Semenov MV et al (2001) Beta-arrestin 1 modulates lymphoid enhancer factor transcriptional activity through interaction with phosphorylated dishevelled proteins. Proc Natl Acad Sci USA 98:14889–14894.PubMedCrossRefGoogle Scholar
  15. 15.
    Schulte G, Schambony A, Bryja V (2010) Beta-arrestins – scaffolds and signalling elements essential for WNT/Frizzled signalling pathways? Br J Pharmacol 159:1051–1058.PubMedCrossRefGoogle Scholar
  16. 16.
    Lin F T, Daaka Y, Lefkowitz RJ (1998) Beta-arrestins regulate mitogenic signaling and clathrin-mediated endocytosis of the insulin-like growth factor I receptor. J Biol Chem 273:31640–31643.PubMedCrossRefGoogle Scholar
  17. 17.
    Doucette C, Vedvik K, Koepnick E et al (2009) Kappa opioid receptor screen with the Tango beta-arrestin recruitment technology and characterization of hits with second-messenger assays. J Biomol Screen 14:381–394.PubMedCrossRefGoogle Scholar
  18. 18.
    Patel A, Murray J, McElwee-Whitmer S et al (2009) A combination of ultrahigh throughput PathHunter and cytokine secretion assays to identify glucocorticoid receptor agonists. Anal Biochem 385:286–292.PubMedCrossRefGoogle Scholar
  19. 19.
    Yin H, Chu A, Li W et al (2009) Lipid G protein-coupled receptor ligand identification using beta-arrestin PathHunter assay. J Biol Chem 284:12328–12338.PubMedCrossRefGoogle Scholar
  20. 20.
    van der Lee MM, Blomenrohr M, van der Doelen AA et al (2009) Pharmacological characterization of receptor redistribution and beta-arrestin recruitment assays for the cannabinoid receptor 1. J Biomol Screen 14:811–823.PubMedCrossRefGoogle Scholar
  21. 21.
    McGuinness D, Malikzay A, Visconti R et al (2009) Characterizing cannabinoid CB2 receptor ligands using DiscoveRx PathHunter beta-arrestin assay. J Biomol Screen 14:49–58.PubMedCrossRefGoogle Scholar
  22. 22.
    Kocan M, Pfleger KD (2009) Detection of GPCR/beta-arrestin interactions in live cells using bioluminescence resonance energy transfer technology. Methods Mol Biol 552:305–317.PubMedCrossRefGoogle Scholar
  23. 23.
    Pfleger KD, Seeber RM, Eidne KA (2006) Bioluminescence resonance energy transfer (BRET) for the real-time detection of protein-protein interactions. Nat Protoc 1:337–345.PubMedCrossRefGoogle Scholar
  24. 24.
    Masri B, Salahpour A, Didriksen M et al (2008) Antagonism of dopamine D2 receptor/beta-arrestin 2 interaction is a common property of clinically effective antipsychotics. Proc Natl Acad Sci USA 105:13656–13661.PubMedCrossRefGoogle Scholar
  25. 25.
    Klewe IV, Nielsen SM, Tarpo L et al (2008) Recruitment of beta-arrestin 2 to the dopamine D2 receptor: insights into anti-psychotic and anti-parkinsonian drug receptor signalling. Neuropharmacology 54:1215–1222.PubMedCrossRefGoogle Scholar
  26. 26.
    Garippa RJ, Hoffman AF, Gradl G et al (2006) High-throughput confocal microscopy for beta-arrestin-green fluorescent protein translocation G protein-coupled receptor assays using the Evotec Opera. Methods Enzymol 414:99–120.PubMedCrossRefGoogle Scholar
  27. 27.
    Barak LS, Ferguson SS, Zhang J et al (1997) A beta-arrestin/green fluorescent protein biosensor for detecting G protein-coupled receptor activation. J Biol Chem 272:27497–27500.PubMedCrossRefGoogle Scholar
  28. 28.
    Kapur A, Zhao P, Sharir H et al (2009) Atypical responsiveness of the orphan receptor GPR55 to cannabinoid ligands. J Biol Chem 284:29817–29827.PubMedCrossRefGoogle Scholar
  29. 29.
    Smith GP. (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317.PubMedCrossRefGoogle Scholar
  30. 30.
    Szardenings M, Tornroth S, Mutulis F et al (1997) Phage display selection on whole cells yields a peptide specific for melanocortin receptor 1. J Biol Chem 272:27943–27948.PubMedCrossRefGoogle Scholar
  31. 31.
    Houimel M, Loetscher P, Baggiolini M et al (2001) Functional inhibition of CCR3-dependent responses by peptides derived from phage libraries. Eur J Immunol 31:3535–3545.PubMedCrossRefGoogle Scholar
  32. 32.
    Hessling J, Lohse MJ, and Klotz KN (2003) Peptide G protein agonists from a phage display library. Biochem Pharmacol 65:961–967.PubMedCrossRefGoogle Scholar
  33. 33.
    Bikkavilli RK, Tsang SY, Tang WM et al (2006) Identification and characterization of surrogate peptide ligand for orphan G protein-coupled receptor mas using phage-displayed peptide library. Biochem Pharmacol 71:319–337.PubMedCrossRefGoogle Scholar
  34. 34.
    Congreve M, Murray CW, Blundell TL (2005) Structural biology and drug discovery. Drug Discov Today 10:895–907.PubMedCrossRefGoogle Scholar
  35. 35.
    Palczewski K, Kumasaka T, Hori T et al (2000) Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289:739–745.PubMedCrossRefGoogle Scholar
  36. 36.
    Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human beta 2-adrenergic G protein-coupled receptor. Science 318:1258–1265.PubMedCrossRefGoogle Scholar
  37. 37.
    Rasmussen SG, Choi HJ, Rosenbaum DM et al (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387.PubMedCrossRefGoogle Scholar
  38. 38.
    Jaakola VP, Griffith MT, Hanson MA et al (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217.PubMedCrossRefGoogle Scholar
  39. 39.
    Congreve M, Marshall F (2010) The impact of GPCR structures on pharmacology and structure-based drug design. Br J Pharmacol 159:986–996.PubMedCrossRefGoogle Scholar
  40. 40.
    Bowie JU (2001) Stabilizing membrane proteins. Curr Opin Struct Biol 11:397–402.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhou Y, Bowie JU (2000) Building a thermostable membrane protein. J Biol Chem 275:6975–6979.PubMedCrossRefGoogle Scholar
  42. 42.
    Lau FW, Nauli S, Zhou Y et al (1999) Changing single side-chains can greatly enhance the resistance of a membrane protein to irreversible inactivation. J Mol Biol 290:559–564.PubMedCrossRefGoogle Scholar
  43. 43.
    Serrano-Vega MJ, Magnani F, Shibata Y et al (2008) Conformational thermostabilization of the beta 1-adrenergic receptor in a detergent-resistant form. Proc Natl Acad Sci USA 105:877–882.PubMedCrossRefGoogle Scholar
  44. 44.
    Warne T, Serrano-Vega MJ, Baker JG et al (2008) Structure of a beta 1-adrenergic G-protein-coupled receptor. Nature 454:486–491.PubMedCrossRefGoogle Scholar
  45. 45.
    Bond RA, Ijzerman AP (2006) Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol Sci 27:92–96.PubMedCrossRefGoogle Scholar
  46. 46.
    Gupta A, Heimann AS, Gomes I et al (2008) Antibodies against G-protein coupled receptors: novel uses in screening and drug development. Comb Chem High Throughput Screen 11:463–467.PubMedCrossRefGoogle Scholar
  47. 47.
    Peter JC, Wallukat G, Tugler J et al (2004) Modulation of the M2 muscarinic acetylcholine receptor activity with monoclonal anti-M2 receptor antibody fragments. J Biol Chem 279:55697–55706.PubMedCrossRefGoogle Scholar
  48. 48.
    Vidi PA, Watts VJ. (2009) Fluorescent and bioluminescent protein-fragment complementation assays in the study of G protein-coupled receptor oligomerization and signalling. Mol Pharmacol 75:733–739.PubMedCrossRefGoogle Scholar
  49. 49.
    Hu CD, Chinenov Y, Kerppola TK (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell 9:789–798.PubMedCrossRefGoogle Scholar
  50. 50.
    MacDonald ML, Lamerdin J, Owens S et al (2006) Identifying off-target effects and hidden phenotypes of drugs in human cells. Nat Chem Biol 2:329–337.PubMedCrossRefGoogle Scholar
  51. 51.
    Middleton RJ, Kellam B (2005) Fluorophore-tagged GPCR ligands. Curr Opin Chem Biol 9:517–525.PubMedCrossRefGoogle Scholar
  52. 52.
    Cordeaux Y, Briddon SJ, Alexander SP et al (2008) Agonist-occupied A3 adenosine receptors exist within heterogeneous complexes in membrane microdomains of individual living cells. FASEB J 22:850–860.PubMedCrossRefGoogle Scholar
  53. 53.
    Chini B, Parenti M (2004) G-protein coupled receptors in lipid rafts and caveolae: how, when and why do they go there? J Mol Endocrinol 32:325–338.PubMedCrossRefGoogle Scholar
  54. 54.
    Ostrom RS, Insel PA (2004) The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharmacol 143:235–245.PubMedCrossRefGoogle Scholar
  55. 55.
    Elson EL (2004) Quick tour of fluorescence correlation spectroscopy from its inception. J Biomed Opt 9:857–864.PubMedCrossRefGoogle Scholar
  56. 56.
    Briddon SJ, Gandia J, Amaral OB et al (2008) Plasma membrane diffusion of G protein-coupled receptor oligomers. Biochim Biophys Acta 1783:2262–2268.PubMedCrossRefGoogle Scholar
  57. 57.
    Briddon SJ, Middleton RJ, Cordeaux Y et al (2004) Quantitative analysis of the formation and diffusion of A1-adenosine receptor-antagonist complexes in single living cells. Proc Natl Acad Sci USA 101:4673–4678.PubMedCrossRefGoogle Scholar
  58. 58.
    Briddon SJ, Hill SJ (2007) Pharmacology under the microscope: the use of fluorescence correlation spectroscopy to determine the properties of ligand-receptor complexes. Trends Pharmacol Sci 28:637–645.PubMedCrossRefGoogle Scholar
  59. 59.
    Hegener O, Prenner L, Runkel F et al (2004) Dynamics of beta2-adrenergic receptor-ligand complexes on living cells. Biochemistry 43:6190–6199.PubMedCrossRefGoogle Scholar
  60. 60.
    Haasen D, Schnapp A, Valler MJ et al (2006) G protein-coupled receptor internalization assays in the high-content screening format. Methods Enzymol 414:121–139.PubMedCrossRefGoogle Scholar
  61. 61.
    Beaudet A, Nouel D, Stroh T et al (1998) Fluorescent ligands for studying neuropeptide receptors by confocal microscopy. Braz J Med Biol Res 31:1479–1489.PubMedCrossRefGoogle Scholar
  62. 62.
    O’Dowd BF, Alijaniaram M, Ji X et al (2007) Using ligand-induced conformational change to screen for compounds targeting G-protein-coupled receptors. J Biomol Screen 12:175–185.PubMedCrossRefGoogle Scholar
  63. 63.
    Gautier A, Juillerat A, Heinis C et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136.PubMedCrossRefGoogle Scholar
  64. 64.
    Maurel D, Comps-Agrar L, Brock C et al (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and SNAP-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567.PubMedCrossRefGoogle Scholar
  65. 65.
    Kofuku Y, Yoshiura C, Ueda T et al (2009) Structural basis of the interaction between chemokine stromal cell-derived factor-1/CXCL12 and its G-protein-coupled receptor CXCR4. J Biol Chem 284:35240–35250.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Elisa Alvarez-Curto
  • Richard J. Ward
  • Graeme Milligan
    • 1
    Email author
  1. 1.Institute of Neurosciences and PsychologyUniversity of GlasgowGlasgowUK

Personalised recommendations